如圖,在平面直角坐標(biāo)系中,直線y=x+1分別與兩坐標(biāo)軸交于B,A兩點(diǎn),C為該直線上的一動點(diǎn),以每秒1個單位長度的速度從點(diǎn)A開始沿直線BA向上移動,作等邊△CDE,點(diǎn)D和點(diǎn)E都在x軸上,以點(diǎn)C為頂點(diǎn)的拋物線y=a(x-m)2+n經(jīng)過點(diǎn)E.⊙M與x軸、直線AB都相切,其半徑為3(1-)a.
(1)求點(diǎn)A的坐標(biāo)和∠ABO的度數(shù);
(2)當(dāng)點(diǎn)C與點(diǎn)A重合時,求a的值;
(3)點(diǎn)C移動多少秒時,等邊△CDE的邊CE第一次與⊙M相切?

【答案】分析:(1)已知直線AB的解析式,令解析式的x=0,能得到A點(diǎn)坐標(biāo);令y=0,能得到B點(diǎn)坐標(biāo);在Rt△OAB中,知道OA、OB的長,用正切函數(shù)即可得到∠ABO的讀數(shù).
(2)當(dāng)C、A重合時,就告訴了點(diǎn)C的坐標(biāo),然后結(jié)合OC的長以及等邊三角形的特性求出OD、OE的長,即可得到D、E的坐標(biāo),利用待定系數(shù)即可確定a的值.
(3)此題需要結(jié)合圖形來解,首先畫出第一次相切時的示意圖(詳見解答圖);已知的條件只有圓的半徑,那么先連接圓心與三個切點(diǎn)以及點(diǎn)E,首先能判斷出四邊形CPMN是正方形,那么CP與⊙M的半徑相等,只要再求出PE就能進(jìn)一步求得C點(diǎn)坐標(biāo);那么可以從PE=EQ,即Rt△MEP入手,首先∠CED=60°,而∠MEP=∠MEQ,易求得這兩個角的度數(shù),通過解直角三角形不難得到PE的長,即可求出PE及點(diǎn)C、E的坐標(biāo).然后利用C、E的坐標(biāo)確定a的值,進(jìn)而可求出AC的長,由此得解.
解答:解:(1)當(dāng)x=0時,y=1;當(dāng)y=0時,x=-
∴OA=1,OB=,
=
∴A的坐標(biāo)是(0,1)
∠ABO=30°.

(2)∵△CDE為等邊△,點(diǎn)A(0,1),
∴tan30°=,∴,
∴D的坐標(biāo)是(-,0),
E的坐標(biāo)是(,0),
把點(diǎn)A(0,1),D(-,0),E(,0)代入 y=a(x-m)2+n,
解得:a=-3.

(3)如圖,設(shè)切點(diǎn)分別是Q,N,P,連接MQ,MN,MP,ME,過點(diǎn)C作CH⊥x軸,H為垂足,過A作AF⊥CH,F(xiàn)為垂足.
∵△CDE是等邊三角形,∠ABO=30°
∴∠BCE=90°,∠ECN=90°
∵CE,直線AB分別與⊙M相切,
∴∠MPC=∠CNM=90°,
∴四邊形MPCN為矩形,
∵M(jìn)P=MN
∴四邊形MPCN為正方形
∴MP=MN=CP=CN=3(1-)a(a<0).
∵EC和x軸都與⊙M相切,
∴EP=EQ.
∵∠NBQ+∠NMQ=180°,
∴∠PMQ=60°
∴∠EMQ=30°,
∴在Rt△MEP中,tan30°=,∴PE=(-3)a
∴CE=CP+PE=3(1-)a+(-3)a=-2a
∴DH=HE=-a,CH=-3a,BH=-3a,
∴OH=-3a-,OE=-4a-
∴E(-4a-,0)
∴C(-3a-,-3a)
設(shè)二次函數(shù)的解析式為:y=a(x+3a+2-3a
∵E在該拋物線上
∴a(-4a-+3a+2-3a=0
得:a2=1,解之得a1=1,a2=-1
∵a<0,∴a=-1
∴AF=2,CF=2,∴AC=4
∴點(diǎn)C移動到4秒時,等邊△CDE的邊CE第一次與⊙M相切.
點(diǎn)評:這道二次函數(shù)綜合題目涉及的知識點(diǎn)較多,有:待定系數(shù)法確定函數(shù)解析式、等邊三角形的性質(zhì)、切線長定理等重點(diǎn)知識.難度在于涉及到動點(diǎn)問題,許多數(shù)值都不是具體值;(3)題中,正確畫出草圖、貫徹數(shù)形結(jié)合的解題思想是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案