【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),DE=4BE,連接CE,過點(diǎn)E作EF⊥CE交AB的延長(zhǎng)線于點(diǎn)F,若AF=8,則正方形ABCD的邊長(zhǎng)為_____.
【答案】5
【解析】
由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,從而得到∠ECH=∠BFH;作輔助線可證明四邊形ENBM是正方形,根據(jù)正方形的性質(zhì)得EM=EN,由角角邊可證明△EMC≌△ENF,得CM=FN;因DE=4BE,△BEM∽△BDC,△BEN∽△BDA和線段的和差可求出正方形ABCD的邊長(zhǎng).
解:如圖所示:
過點(diǎn)E作EM⊥BC,EN⊥AB,分別交BC、AB于M、N兩點(diǎn),
且EF與BC相交于點(diǎn)H.
∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,
∴∠CEH=∠FBH=90°,
又∵∠EHC=∠BHF,
∴△ECH∽△BFH(AA),
∴∠ECH=∠BFH,
∵EM⊥BC,EN⊥AB,四邊形ABCD是正方形,
∴四邊形ENBM是正方形,
∴EM=EN,∠EMC=∠ENF=90°,
在△EMC和△ENF中
,
∴△EMC≌△ENF(AAS)
∴CM=FN,
∵EM∥DC,∴△BEM∽△BDC,
∴.
又∵DE=4BE,
∴,
同理可得:,
設(shè)BN=a,則AB=5a,CM=AN=NF=4a,
∵AF=8,AF=AN+FN,
∴8a=8
解得:a=1,
∴AB=5
故答案為:5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,等邊△AOB的邊長(zhǎng)為6,點(diǎn)C在邊OA上,點(diǎn)D在邊AB上,且OC=3BD,反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,則k的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=10,AB⊥AC,點(diǎn)P從點(diǎn)B出發(fā)沿著B→A→C的路徑運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿著A→C→D的路徑以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,y=PQ2,下列圖象中大致反映y與x之間的函數(shù)關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△OAB的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,∠AOB=90°,AO=2BO,當(dāng)點(diǎn)A在反比例函數(shù)(x>0)的圖像上移動(dòng)時(shí),點(diǎn)B的坐標(biāo)滿足的函數(shù)表達(dá)式為( )
A. (x<0) B. (x<0)
C. (x<0) D. (x<0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在軸正半軸上,軸,點(diǎn)、的橫坐標(biāo)都是3,且,點(diǎn)在上,若反比例函數(shù)的圖象經(jīng)過點(diǎn)、,且.
(1)求的值及點(diǎn)的坐標(biāo);
(2)將沿著折疊,設(shè)頂點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系的第一象限中,有一點(diǎn)A(1,2),AB∥x軸且AB=6,點(diǎn)C在線段AB的垂直平分線上,且AC=5,將拋物線y=ax2(a>0)的對(duì)稱軸右側(cè)的圖象記作G.
(1)若G經(jīng)過C點(diǎn),求拋物線的解析式;
(2)若G與△ABC有交點(diǎn).
①求a的取值范圍;②當(dāng)0<y≤8時(shí),雙曲線經(jīng)過G上一點(diǎn),求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點(diǎn)作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點(diǎn)坐標(biāo);
(2)如圖2,若P點(diǎn)從A點(diǎn)出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點(diǎn)共線,求此時(shí)P點(diǎn)坐標(biāo)及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】第36屆全國(guó)信息學(xué)冬令營(yíng)在廣州落下帷幕,長(zhǎng)郡師生閃耀各大賽場(chǎng),金牌數(shù)、獎(jiǎng)牌數(shù)均穩(wěn)居湖南省第一.學(xué)校擬預(yù)算7700元全部用于購(gòu)買甲、乙、丙三種圖書共20套獎(jiǎng)勵(lì)獲獎(jiǎng)師生,其中甲種圖書每套500元,乙種圖書每套400元,丙種圖書每套250元,設(shè)購(gòu)買甲種圖書x套,乙種圖書y套,請(qǐng)解答下列問題:
(1)請(qǐng)求出y與x的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);
(2)若學(xué)校購(gòu)買的甲、乙兩種圖書共14套,求甲、乙圖書各多少套?
(3)若學(xué)校購(gòu)買的甲、乙兩種圖書均不少于1套,則有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,OC=7,點(diǎn)B在第一象限,點(diǎn)D在邊AB上,點(diǎn)E在邊BC上,且∠BDE=30°,將△BDE沿DE折疊得到△B′DE.若AD=1,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點(diǎn)B′,D,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com