精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.

(1)如圖1,AE平分∠CABBCE,交CDF,若DF=2,求AC的長;

(2)將圖1中的△ADC繞點D順時針旋轉一定角度得到△ADN,如圖2,P,Q分別為線段AN,BC的中點,連接AC,BN,PQ,求證:BN=PQ.

【答案】(1)AC4+2;(2)見解析.

【解析】

(1)利用角平分線定理求出FM,再利用等腰直角三角形的性質即可得出CF,最后用即可;
(2)先判斷出,再判斷出∠PDQ=NDB,進而得出,PDQ∽△NDB即可判斷出結論;

(1)如圖1,

∵等腰直角ABC中,∠ACB=90°,CA=CB,CD為斜邊AB上的中線.

CDAB,ACD=45°

過點FFMAC,

AE平分∠CAB,

FM=FD=2

RtCMF中,∠ACD=45°,

CD是等腰直角三角形斜邊的中線,

(2)如圖2,連接DP,DQ,

∵△ADC繞點D順時針旋轉一定角度得到ADN,

AN=BC,DN=CD=DB,ADN是等腰直角三角形,

∵△BCD是等腰直角三角形,點QBC中點,

∵點PAN中點,

∵∠NDP=CDQ=45°,

∴∠PDQ=PDN+CDN+CDQ=90°+CDN,

∵∠NDB=CDN+CDB=90°+CDN,

∴∠PDQ=NDB,

∴△PDQ∽△NDB,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現在分別位于點和點處,、均在的中垂線上,且、到大樓的距離分別為米和米,又已知米,米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線和直線.我們約定:當x任取一值時x對應的函數值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M= y1=y2.

下列判斷: 當x>2時,M=y2;

當x<0時,x值越大,M值越大;

使得M大于4的x值不存在;

若M=2,則x= 1 .

其中正確的有

A.1個 B.2個 C. 3個 D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】歡樂跑中國重慶站比賽前夕,小剛和小強相約晨練跑步.小剛比小強早1分鐘跑步出門,3分鐘后他們相遇.兩人寒暄2分鐘后,決定進行跑步比賽.比賽時小剛的速度始終是180/分,小強的速度是220/分.比賽開始10分鐘后,因霧霾嚴重,小強突感身體不適,于是他按原路以出門時的速度返回,直到他們再次相遇.如圖所示是小剛、小強之間的距離y(千米)與小剛跑步所用時間x(分鐘)之間的函數圖象.問小剛從家出發(fā)到他們再次相遇時,一共用了__分鐘.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知BDCE是△ABC的高,MBC邊上的中點,若△EMD是等腰直角三角形,則∠A=________°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形網格中,小格的頂點叫做格點,以格點為頂點的三角形叫做格點三角形.下圖中的正方形網格中是格點三角形,小正方形網格的邊長為(單位長度).

的面積是________(平方單位);

在圖所示的正方形網格中作出格點,使,且、中任意兩條線段的長度都不相等;

在所有與相似的格點三角形中,是否存在面積為(平方單位)的格點三角形?如果存在,請在圖中作出,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),RtAOB中,∠A=90°,AOB=60°,OB=AOB的平分線OCABC,過O點做與OB垂直的直線ON.動點P從點B出發(fā)沿折線BCCO以每秒1個單位長度的速度向終點O運動,運動時間為t秒,同時動點Q從點C出發(fā)沿折線COON以相同的速度運動,當點P到達點OP、Q同時停止運動.

1)求OC、BC的長;

2)設CPQ的面積為S,求St的函數關系式;

3)當POCQON上運動時,如圖(2),設PQOA交于點M,當t為何值時,OPM為等腰三角形?求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABCDEF中,下列六個條件中:①ABDE;②BCEF;③ACDF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F,不能判斷ABCDEF全等的是( 。

A.①②④B.①②③C.④⑥①D.②③⑥

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形。

1)請用兩種不同的方法求圖2中陰影部分的面積(直接用含mn的代數式表示).

方法1;

方法2.

2)根據(1)中的結論,請你寫出代數式(m+n2,(m-n2mn之間的等量關系.

3)根據(2)題中的等量關系,解決如下問題:已知實數a,b滿足:a+b=5,ab=4,求a-b的值.

查看答案和解析>>

同步練習冊答案