如圖,Rt△ABC中,∠ACD=90°,直線EF∥BD,交AB于點E,交AC于點G,交AD于點F.若S△AEG=S四邊形EBCG,則=         

 

【答案】

【解析】

試題分析:∵EF∥BD

∴∠AEG=∠ABC,∠AGE=∠ACB,

∴△AEG∽△ABC,且S△AEG=S四邊形EBCG

∴S△AEG:S△ABC=1:4,

∴AG:AC=1:2,

又EF∥BD

∴∠AGF=∠ACD,∠AFG=∠ADC,

∴△AGF∽△ACD,且相似比為1:2,

∴S△AFG:S△ACD=1:4,

∴S△AFG=S四邊形FDCG

S△AFG=S△ADC

∵AF:AD=GF:CD=AG:AC=1:2

∵∠ACD=90°

∴AF=CF=DF

∴CF:AD=1:2.

考點:相似三角形的判定與性質(zhì).

點評:本題考查了相似三角形的性質(zhì),相似三角形的面積的比等于相似比的平方.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習冊答案