已知⊙O中,弦AB=AC,點P是∠BAC所對弧上一動點,連接PB、PA、PC.

(1)如圖①,把△ABP繞點A逆時針旋轉(zhuǎn)到△ACQ,求證:點P、C、Q三點在同一直線上.
(2)如圖②,若∠BAC=60°,試探究PA、PB、PC之間的關系.
(3)若∠BAC=120°時,(2)中的結論是否成立?若是,請證明;若不是,請?zhí)骄克鼈冇钟泻螖?shù)量關系.
分析:(1)如圖①,連接PC.根據(jù)“內(nèi)接四邊形的對角互補的性質(zhì)”證得∠ACP+∠ACQ=180°,即點P、C、Q三點共線;
(2)如圖②,通過作輔助線BC、PE、CE(連接BC,延長BP至E,使PE=PC,連接CE)構建等邊△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的對應邊相等和線段間的和差關系可以求得PA=PB+PC;
(3)如圖③,在線段PC上截取PQ,使PQ=PB,過點A作AG⊥PC于點G.利用全等三角形△ABP≌△AQP(SAS)的對應邊相等推知AB=AQ,PB=PG,將PA、PB、PC的數(shù)量關系轉(zhuǎn)化到△APC中來求即可.
解答:(1)證明:如圖①,連接PC.
∵△ACQ是由△ABP繞點A逆時針旋轉(zhuǎn)得到的,
∴∠ABP=∠ACQ.
由圖①知,點A、B、P、C四點共圓,
∴∠ACP+∠ABP=180°(圓內(nèi)接四邊形的對角互補),
∴∠ACP+∠ACQ=180°(等量代換),
∴點P在線段QC的延長線上,即點P、C、Q三點在同一直線上;

(2)解:PA=PB+PC.理由如下:
如圖②,連接BC,延長BP至E,使PE=PC,連接CE.
∵弦AB=弦AC,∠BAC=60°,
∴△ABC是等邊三角形(有一內(nèi)角為60°的等腰三角形是等邊三角形).
∵A、B、P、C四點共圓,
∴∠BAC+∠BPC=180°(圓內(nèi)接四邊形的對角互補),
∵∠BPC+∠EPC=180°,
∴∠BAC=∠CPE=60°,
∵PE=PC,
∴△PCE是等邊三角形,
∴CE=PC,∠E=∠ECP=∠EPC=60°;
又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,
∴∠BCE=∠ACP(等量代換).
在△BEC和△APC中,
CE=PC
∠BCE=∠ACP
AC=BC
,
∴△BEC≌△APC(SAS),
∴BE=PA,
∴PA=BE=PB+PC;

(3)若∠BAC=120°時,(2)中的結論不成立.
3
PA=PB+PC.理由如下:
如圖③,在線段PC上截取PQ,使PQ=PB,過點A作AG⊥PC于點G.
∵∠BAC=120°,∠BAC+∠BPC=180°,
∴∠BPC=60°.
∵弦AB=弦AC,
∴∠APB=∠APQ=30°.
在△ABP和△AQP中,
PB=PQ
∠APB=∠APQ
AP=AP
,
∴△ABP≌△AQP(SAS),
∴AB=AQ,PB=PQ(全等三角形的對應邊相等),
∴AQ=AC(等量代換).
在等腰△AQC中,QG=CG.
在Rt△APG中,∠APG=30°,則AP=2AG,PG=
3
AG.
∴PB+PC=PG-QG+PG+CG=PG-QG+PG+QG=2PG=2
3
AG,
3
PA=2
3
AG,即
3
PA=PB+PC.
點評:本題考查了圓的綜合題:注意圓心角、弧、弦間的關系,全等三角形的判定與性質(zhì),圓內(nèi)接四邊形的性質(zhì)的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖所示,已知⊙O中,弦AB,CD相交于點P,AP=6,BP=2,CP=4,則PD的長是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O中,弦AB與CD相交于點P.
求證:PA•PB=PC•PD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O中,弦AB=12cm,O點到AB的距離等于AB的一半,則∠AOB的度數(shù)為
 
°,圓的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•昆明)已知⊙O中,弦AB的長為8cm,半徑為5cm,那么圓心O到弦AB的距離為
3
3
cm.

查看答案和解析>>

同步練習冊答案