(2005•嘉興)有一種汽車用“千斤頂”,它由4根連桿組成菱形ABCD,當(dāng)螺旋裝置順時(shí)針旋轉(zhuǎn)時(shí),B、D兩點(diǎn)的距離變小,從而頂起汽車.若AB=30,螺旋裝置每順時(shí)針旋轉(zhuǎn)1圈,BD的長就減少1.設(shè)BD=a,AC=h,
(1)當(dāng)a=40時(shí),求h值;
(2)從a=40開始,設(shè)螺旋裝置順時(shí)針方向旋轉(zhuǎn)x圈,求h關(guān)于x的函數(shù)解析式;
(3)從a=40開始,螺旋裝置順時(shí)針方向連續(xù)旋轉(zhuǎn)2圈,設(shè)第1圈使“千斤頂”增高s1,第2圈使“千斤頂”增高s2,試判定s1與s2的大小,并說明理由;若將條件“從a=40開始”改為“從某一時(shí)刻開始”,則結(jié)果如何,為什么?

【答案】分析:(1)根據(jù)菱形的兩條對角線垂直且平分的性質(zhì),然后根據(jù)勾股定理,即可求出h值.
(2)首先知道螺旋裝置順時(shí)針方向旋轉(zhuǎn)的圈數(shù)與BD之間的關(guān)系,然后用勾股定理,就可求出h與x之間的函數(shù)關(guān)系.
(3)此問首先要搞清楚增高的s是指AC增高了s,根據(jù)第2問的函數(shù)關(guān)系進(jìn)行推算,就可知道s1與s2的大小關(guān)系.
解答:解:(1)連AC交BD于O,
∵ABCD為菱形,
∴∠AOB=90°,OA=,OB=20,(3分)
在Rt△AOB中,
∵AO2+BO2=AB2,
即(2+202=302
∴h=20;(2分)

(2)從a=40開始,螺旋裝置順時(shí)針方向旋轉(zhuǎn)x圈,則BD=40-x,(2分)
∴(2+(2=302,
∴h=;(2分)
(3)結(jié)論:s1>s2
中,
令x=0得,h=≈44.721;
令x=1得,h1=≈45.596;
令x=2得,h2=≈46.435;
∴s1=h1-h≈0.88,s2=h2-h1≈0.84,
∴s1>s2;(3分)
也可以如下比較s1、s2的大小:

=
=
而79>77,
∴s1>s2;(3分)
若將條件“從a=40開始”改為“從任意時(shí)刻開始”,則結(jié)論s1>s2仍成立.

,
而2a-1>2a-3,
∴s1>s2.(2分)
點(diǎn)評:菱形的性質(zhì)是中考常見的一個(gè)考點(diǎn),將其與勾股定理綜合使用,是解決相似題型的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(07)(解析版) 題型:解答題

(2005•嘉興)如圖,河對岸有一鐵塔AB.在C處測得塔頂A的仰角為30°,向塔前進(jìn)16米到達(dá)D,在D處測得A的仰角為45°,求鐵塔AB的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2005•嘉興)有一種汽車用“千斤頂”,它由4根連桿組成菱形ABCD,當(dāng)螺旋裝置順時(shí)針旋轉(zhuǎn)時(shí),B、D兩點(diǎn)的距離變小,從而頂起汽車.若AB=30,螺旋裝置每順時(shí)針旋轉(zhuǎn)1圈,BD的長就減少1.設(shè)BD=a,AC=h,
(1)當(dāng)a=40時(shí),求h值;
(2)從a=40開始,設(shè)螺旋裝置順時(shí)針方向旋轉(zhuǎn)x圈,求h關(guān)于x的函數(shù)解析式;
(3)從a=40開始,螺旋裝置順時(shí)針方向連續(xù)旋轉(zhuǎn)2圈,設(shè)第1圈使“千斤頂”增高s1,第2圈使“千斤頂”增高s2,試判定s1與s2的大小,并說明理由;若將條件“從a=40開始”改為“從某一時(shí)刻開始”,則結(jié)果如何,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年浙江省舟山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•嘉興)有一種汽車用“千斤頂”,它由4根連桿組成菱形ABCD,當(dāng)螺旋裝置順時(shí)針旋轉(zhuǎn)時(shí),B、D兩點(diǎn)的距離變小,從而頂起汽車.若AB=30,螺旋裝置每順時(shí)針旋轉(zhuǎn)1圈,BD的長就減少1.設(shè)BD=a,AC=h,
(1)當(dāng)a=40時(shí),求h值;
(2)從a=40開始,設(shè)螺旋裝置順時(shí)針方向旋轉(zhuǎn)x圈,求h關(guān)于x的函數(shù)解析式;
(3)從a=40開始,螺旋裝置順時(shí)針方向連續(xù)旋轉(zhuǎn)2圈,設(shè)第1圈使“千斤頂”增高s1,第2圈使“千斤頂”增高s2,試判定s1與s2的大小,并說明理由;若將條件“從a=40開始”改為“從某一時(shí)刻開始”,則結(jié)果如何,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年浙江省嘉興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•嘉興)有一種汽車用“千斤頂”,它由4根連桿組成菱形ABCD,當(dāng)螺旋裝置順時(shí)針旋轉(zhuǎn)時(shí),B、D兩點(diǎn)的距離變小,從而頂起汽車.若AB=30,螺旋裝置每順時(shí)針旋轉(zhuǎn)1圈,BD的長就減少1.設(shè)BD=a,AC=h,
(1)當(dāng)a=40時(shí),求h值;
(2)從a=40開始,設(shè)螺旋裝置順時(shí)針方向旋轉(zhuǎn)x圈,求h關(guān)于x的函數(shù)解析式;
(3)從a=40開始,螺旋裝置順時(shí)針方向連續(xù)旋轉(zhuǎn)2圈,設(shè)第1圈使“千斤頂”增高s1,第2圈使“千斤頂”增高s2,試判定s1與s2的大小,并說明理由;若將條件“從a=40開始”改為“從某一時(shí)刻開始”,則結(jié)果如何,為什么?

查看答案和解析>>

同步練習(xí)冊答案