在□中,,為垂足.若,則(  。
  
A.B.C.D.
C

試題分析:先根據(jù)平行四邊形的性質(zhì)求得∠B的度數(shù),再根據(jù)三角形的內(nèi)角和定理求解.
∵□中,
∴∠B=180°-125°=55°

180°-55°-90°=35°
故選C.
點(diǎn)評(píng):平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1,第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2…,第n次平移將矩形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到矩形AnBnCnDn(n>2).

(1)求AB1和AB2的長(zhǎng).
(2)若ABn的長(zhǎng)為56,求n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AB=DC,延長(zhǎng)CB到E,使BE=AD,連接AE、AC.

(1)求證:AE=AC;
(2)若梯形ABCD的高為2,∠CAD=30°,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,正方形的面積為4,是等邊三角形,點(diǎn)在正方形內(nèi),在對(duì)角線上有一點(diǎn),使的和最小,則這個(gè)最小值為_(kāi)_________,的面積為 __________       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD(AB<AD)中,將△ABE沿AE對(duì)折,使AB邊落在對(duì)角線AC上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,同時(shí)將△CEG沿EG對(duì)折,使CE邊落在EF所在直線上,點(diǎn)C的對(duì)應(yīng)點(diǎn)為H.

(1)證明:AF∥HG(圖(1));
(2)如果點(diǎn)C的對(duì)應(yīng)點(diǎn)H恰好落在邊AD上(圖(2)).判斷四邊形AECH的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,若AD=2,∠AOB=120°,則CD=    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點(diǎn).O是△ABC平面上的一動(dòng)點(diǎn),連接OB、OC,G、F分別是OB、OC的中點(diǎn),順次連接點(diǎn)D、G、F、E.

(1)如圖,當(dāng)點(diǎn)O在△ABC內(nèi)時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,點(diǎn)O所在位置應(yīng)滿足什么條件?(直接寫(xiě)出答案,不需說(shuō)明理由.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形內(nèi)部分布著一個(gè)大正方形和三個(gè)邊長(zhǎng)相等的小正方形,設(shè)左下角較大的正方形的面積為S1,三個(gè)小正方形中的其中一個(gè)正方形的面積為S2,那么S1S2的比值是
A.3:1B.4:1C.25:8D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,在平行四邊形中,延長(zhǎng)AD到E,延長(zhǎng)CB到F,使得DE=BF,連接EF,分別交AB、CD于點(diǎn)M、N,連結(jié)AN、CM。

(1)求證:△DEN≌△BFM
(2)試判斷四邊形ANCM的形狀,并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案