【題目】如圖,在矩形ABCD中,AB=6,AD=11.直角尺的直角頂點(diǎn)P在AD上滑動時(shí)(點(diǎn)P與A,D不重合),一直角邊始終經(jīng)過點(diǎn)C,另一直角邊與AB交于點(diǎn)E. 請問:△CDP與△PAE相似嗎?如果相似,請寫出證明過程.

【答案】解:△CDP∽△PAE.理由如下: ∵四邊形ABCD是矩形,
∴∠D=∠A=90°,CD=AB=6,
∴∠PCD+∠DPC=90°,
又∵∠CPE=90°,
∴∠EPA+∠DPC=90°,
∴∠PCD=∠EPA,
∴△CDP∽△PAE.

【解析】根據(jù)矩形的性質(zhì),推出∠D=∠A=90°,再由直角三角形的性質(zhì),得出∠PCD+∠DPC=90°,又因∠CPE=90°,推出∠EPA+∠DPC=90°,∠PCD=∠EPA,從而證明△CDP∽△PAE.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的判定,需要了解相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王浩同學(xué)用木板制作一個帶有卡槽的三角形手機(jī)架,如圖1所示.已知AC=20cm,BC=18cm,∠ACB=50°,王浩的手機(jī)長度為17cm,寬為8cm,王浩同學(xué)能否將手機(jī)放入卡槽AB內(nèi)?請說明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經(jīng)過點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對稱軸與拋物線y= x2交于點(diǎn)Q,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= ,當(dāng)x>0時(shí),y隨x的增大而增大,則關(guān)于x的方程ax2﹣2x+b=0的根的情況是(
A.有兩個正根
B.有兩個負(fù)根
C.有一個正根一個負(fù)根
D.沒有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把直角△ABC的斜邊AC放在定直線l上,按順時(shí)針的方向在直線l上轉(zhuǎn)動兩次,使它轉(zhuǎn)到△A2B1C2的位置,設(shè)AB= ,BC=1,則頂點(diǎn)A運(yùn)動到點(diǎn)A2的位置時(shí),點(diǎn)A所經(jīng)過的路線為(
A.( + )π
B.( + )π
C.2π
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線C1、C2關(guān)于x軸對稱,拋物線C1 , C3關(guān)于y軸對稱,如果拋物線C2的解析式是y=﹣ (x﹣2)2+2,那么拋物線C3的解析式是(
A.y=﹣ (x﹣2)2﹣2
B.y=﹣ (x+2)2+2??
C.y= (x﹣2)2﹣2
D.y= (x+2)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價(jià)多少元?
(3)每臺冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《雁棲塔》位于懷柔“北京雁棲湖國際會都中心”所處大島西南部突出部位的半島上,是“北京雁棲湖國際會都中心”的標(biāo)志性建筑,也是整個雁棲湖風(fēng)景區(qū)的標(biāo)志性建筑. 某校數(shù)學(xué)課外小組為了測量《雁棲塔》(底部可到達(dá))的高度,準(zhǔn)備了如下的測量工具:①平面鏡,②皮尺,③長為1米的標(biāo)桿,④高為1.5m的測角儀(測量仰角、俯角的儀器).第一組選擇用②④做測量工具;第二組選用②③做測量工具;第三組利用自身的高度并選用①②做測量工具,分別畫出如下三種測量方案示意圖.

(1)請你判斷如下測量方案示意圖各是哪個小組的,在測量方案示意圖下方的括號內(nèi)填上小組名稱.
(2)選擇其中一個測量方案示意圖,寫出求《雁棲塔》高度的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AC=10,BC=16,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案