【題目】自我省深化課程改革以來,盤錦市某校開設(shè)了:A.利用影長求物體高度,B.制作視力表,C.設(shè)計遮陽棚,D.制作中心對稱圖形,四類數(shù)學(xué)實(shí)踐活動課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動課,學(xué)校對學(xué)生選修實(shí)踐活動課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息解決下列問題:

(1)本次共調(diào)查______名學(xué)生,扇形統(tǒng)計圖中B所對應(yīng)的扇形的圓心角為______度;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)該校參加實(shí)踐活動課的學(xué)生共1200人,求該校參加D類實(shí)踐活動課的學(xué)生大約多少人?

(4)選修D類數(shù)學(xué)實(shí)踐活動的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報設(shè)計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

【答案】60 144

(2)答案見詳解;(3)300人; (4).

【解析】

1)用C類別人數(shù)除以其所占百分比可得總?cè)藬?shù),用360°乘以B類別人數(shù)占總?cè)藬?shù)的比例即可得;

2)用總?cè)藬?shù)乘以A類別的百分比求得其人數(shù),用總?cè)藬?shù)減去A,B,C的人數(shù)求得D類別的人數(shù),據(jù)此補(bǔ)全圖形即可;

3)用該??cè)藬?shù)×D類別在樣本中所占的比例即可得出結(jié)論;

4)畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出所抽取的兩人恰好是1名女生和1名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.

1)本次調(diào)查的學(xué)生人數(shù)為12÷20%=60(名),

則扇形統(tǒng)計圖中B所對應(yīng)的扇形的圓心角為360°144°.

故答案為:60,144°.

2A類別人數(shù)為60×15%=9(人),則D類別人數(shù)為60﹣(9+24+12=15(人),

補(bǔ)全條形圖如下:

31200×=300(人)

答:該校參加D類實(shí)踐活動課的學(xué)生大約300人.

4)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中所抽取的兩人恰好是1名女生和1名男生的結(jié)果數(shù)為8,

所以所抽取的兩人恰好是1名女生和1名男生的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB90°,∠B30°,以點(diǎn)O為圓心,OA為半徑作弧交AB于點(diǎn)C,交OB于點(diǎn)D,若OA4,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a)B兩點(diǎn),與x軸交于點(diǎn)C

(1)a,k的值及點(diǎn)B的坐標(biāo);

(2)若點(diǎn)Px軸上,且SACPSBOC,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1當(dāng)銷售單價為70元時,每天的銷售利潤是多少?

2求出每天的銷售利潤y與銷售單價x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;

3如果該企業(yè)每天的總成本不超過7000元,那么銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?每天的總成本=每件的成本×每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線yax24amx+3am2a、m為參數(shù),且a0,m0)與x軸交于A、B兩點(diǎn)(AB的左邊),與y軸交于點(diǎn)C

1)求點(diǎn)B的坐標(biāo)(結(jié)果可以含參數(shù)m);

2)連接CA、CB,若C0,3m),求tanACB的值;

3)如圖②,在(2)的條件下,拋物線的對稱軸為直線lx2,點(diǎn)P是拋物線上的一個動點(diǎn),F是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P,使△POF成為以點(diǎn)P為直角頂點(diǎn)的的等腰直角三角形.若存在,求出所有符合條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E是正方形ABCDAB上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時針旋轉(zhuǎn)90,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G

1)探究線段BEBFDB之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

2)當(dāng)四邊形ABCD為菱形,∠ADC=60,點(diǎn)E是菱形ABCDAB所在直線上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時針旋轉(zhuǎn)120,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G

①如圖2,點(diǎn)E在線段AB上時,請?zhí)骄烤段BE、BFBD之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;

②如圖3,點(diǎn)E在線段AB的延長線上時,DE交射線BC于點(diǎn)M.若BE=1,AB=2,直接寫出線段GM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)(4,4),拋物線yax+m2+n的頂點(diǎn)在線段AB上,與x軸交于C,D兩點(diǎn)(CD的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+b和反比例函數(shù)y=k≠0)交于點(diǎn)A4,1).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 中,AD ,已知點(diǎn) E 是邊 AB 上的一動點(diǎn)(不與A、B 重合)將△ADE 沿 DE 對折,點(diǎn) A 的對應(yīng)點(diǎn)為 P,當(dāng)△APB 是等腰三角形時, 線段 AE=

查看答案和解析>>

同步練習(xí)冊答案