【題目】如圖,在ABC中,AB=AC,點DAC上,且BD=BC=AD,求∠A,ADB的度數(shù)。

【答案】A=36°,ADB=108°

【解析】試題分析:根據(jù)等邊對等角可得∠ABC=∠C,∠A=∠ABD,∠C=∠BDC,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠BDC=∠A+∠ABD=2∠A,然后根據(jù)三角形的內(nèi)角和定理列出方程求解即可.

試題解析:

∵AB=AC,

∴∠ABC=∠C,

∵BD=BC=AD,

∴∠A=∠ABD,∠C=∠BDC,

在△ABD中,∠BDC=∠A+∠ABD=2∠A,

在△ABC中,∠A+∠ABC+∠C=180°,

∴∠A+2∠A+2∠A=180°,

解得∠A=36°,

∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校想知道九年級學(xué)生對我國倡導(dǎo)的一帶一路的了解程度,隨機抽取部分九年級學(xué)生進行問卷調(diào)查,問卷設(shè)有4個選項(每位被調(diào)查的學(xué)生必選且只選一項):A.非常了解.B.了解.C.知道一點.D.完全不知道.將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息,解答下列問題:

1)求本次共調(diào)查了多少學(xué)生?

2)補全條形統(tǒng)計圖;

3)該校九年級共有600名學(xué)生,請你估計了解的學(xué)生約有多少名?

4)在非常了解3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用4個相同的小長方形與1個小正方形鑲嵌而成的圖案,已知該圖案的面積為25,小正方形的面積為4,若用x,y表示小長方形的兩鄰邊長(y<x),則下列關(guān)系中正確的是 ____________________ (填寫序號)

①x+y=5 ②x-y=2 ③4xy+4=25 ④y2+x2=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,經(jīng)過原點的拋物線可以用y=ax2+bx(a≠0)表示,對于這樣的拋物線:

(1)當(dāng)拋物線經(jīng)過點(﹣2,0)和(﹣1,3)時,求拋物線的表達式;

(2)當(dāng)拋物線的頂點在直線y=﹣2x上時,求b的值;

(3)如圖,現(xiàn)有一組這樣的拋物線,它們的頂點A1、A2、…,An在直線y=﹣2x上,橫坐標依次為﹣1,﹣2,﹣3,…,﹣n(n為正整數(shù),且n≤12),分別過每個頂點作x軸的垂線,垂足記為B1、B2,…,Bn,以線段AnBn為邊向左作正方形AnBnCnDn,如果這組拋物線中的某一條經(jīng)過點Dn,求此時滿足條件的正方形AnBnCnDn的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小寶今年5歲,媽媽35歲,( 。┠旰螅瑡寢尩哪挲g是小寶的2倍.

A.30B.20C.10D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.

解決此問題可以用如下方法:延長AE交DC的延長線于點F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個三角形中即可判斷.

AB、AD、DC之間的等量關(guān)系為   ;

(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點F,E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.

(3)問題解決:如圖③,AB∥CF,AE與BC交于點E,BE:EC=2:3,點D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,比﹣11的是( 。

A. 0 B. 1 C. 2 D. ﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx的部分取值滿足下表:

1)試猜想yx的函數(shù)關(guān)系可能是你們學(xué)過的哪類函數(shù),并寫出這個函數(shù)的解析式.(不要求寫x的取值范圍)

2)簡要敘述該函數(shù)的性質(zhì).

查看答案和解析>>

同步練習(xí)冊答案