【題目】已知:如圖,在ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.
【答案】(1)證明見解析(2)∠DOE=90°,理由見解析
【解析】
試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);
(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.
(1)證明:∵在ABCD中,O為對角線BD的中點,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)解:當∠DOE=90°時,四邊形BFDE為菱形,
理由:∵△DOE≌△BOF,
∴OE=OF,
又∵OB=OD
∴四邊形EBFD是平行四邊形,
∵∠EOD=90°,
∴EF⊥BD,
∴四邊形BFDE為菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應(yīng)點B′.根據(jù)下列條件,利用網(wǎng)格點和三角尺畫圖:
(1)補全△A′B′C′
(2)畫出AC邊上的中線BD;
(3)畫出AC邊上的高線BE;
(4)求△ABD的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市初級中學(xué)為了了解中考體育科目的訓(xùn)練情況,從本校九年級學(xué)生中隨機抽取了部分學(xué)生進行了一次中考體育科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成如圖兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽測的學(xué)生人數(shù)是 .
(2)圖1中A級所在扇形的圓心角為 .并把圖2中條形統(tǒng)計圖補充完整.
(3)該校九年級共有學(xué)生1500人,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為 .
(4)請你根據(jù)測試成績提一條合理化的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標系中表示下面各點:
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A點到原點的距離是 .
(3)將點C向x軸的負方向平移6個單位,它與點 重合.
(4)連接CE,則直線CE與y軸是什么位置關(guān)系?
(5)點D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五張如圖1的長為,寬為(>)的小長方形紙片,按圖2的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則,滿足( )
A.= B.=2 C.=3 D.=4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com