【題目】如圖,△ABC中,D是BC邊上的一點,E為AD的中點,過A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
【答案】(1)證明見解析;(2)當AB=AC時,四邊形AFBD是矩形,證明見解析.
【解析】試題分析:(1)根據平行線的性質得到∠AFE=∠DCE,由中點的定義得到AE=DE,根據三角形全等的判定易證得△AFE≌△DCE,利用全等三角形的性質得AF=DC,而AF=BD,即可得到D是BC的中點;
(2)在(1)的基礎上,根據全等三角形的性質和有三個角都是直角的四邊形是矩形.
試題解析:證明:∵AF∥BC,∴∠AFE=∠ECD.
又∵E為AD的中點,∴AE=DE.
在△AFE與△DCE中,∵
∴△AFE≌△DCE(AAS),∴AF=CD.
又∵AF=BD,∴BD=CD.
(2)解:當AB=AC時,四邊形AFBD是矩形.
證法一:由(1)知,D為BC的中點,又∵AB=AC,
∴AD⊥BC.
∵AF∥BC,∴∠DAF=∠ADB=90°.
∵△AFE≌△DCE(已證),∴CE=EF.
∴DE為△BCF的中位線,∴DE∥BF.
∴∠FBD=∠EDC=90°,
∴四邊形AFBD是矩形.
證法二:∵AF=BD,AF∥BD,
∴四邊形AFBD是平行四邊形.
由(1)知,D為BC的中點,又∵AB=AC,
∴AD⊥BC(三線合一),即∠BDA=90°.
∴AFBD是矩形.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,,把一條長為2016個單位長度且沒有彈性的細線線的粗細忽略不計的一端固定在點A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形OABC的邊長為2,以O為圓心,EF為直徑的半圓經過點A,連接AE,CF相交于點P,將正方形OABC從OA與OF重合的位置開始,繞著點O逆時針旋轉90°,交點P運動的路徑長是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD為直徑作圓O,過點D作DE∥AB交圓O于點E
(1)證明點C在圓O上;
(2)求tan∠CDE的值;
(3)求圓心O到弦ED的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文明,源遠流長:中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數,總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數 | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請根據所給信息,解答下列問題:
(1)a= , b=;
(2)請補全頻數分布直方圖;
(3)這次比賽成績的中位數會落在分數段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知單位長度為1的方格中有三角形ABC.
(1)請畫出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;
(2)請以點A為坐標原點建立平面直角坐標系(在圖中畫出),然后寫出點B,B′的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知矩形OABC中,OA=3,AB=6,以OA,OC所在的直線為坐標軸,建立如圖1的平面直角坐標系.將矩形OABC繞點O順時針方向旋轉,得到矩形ODEF,當點B在直線DE上時,設直線DE和x軸交于點P,與y軸交于點Q.
(1)求證:△BCQ≌△ODQ;
(2)求點P的坐標;
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請直接寫出x≤3時,S與x之間的函數關系式,并且寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD中,EF過對角線的交點O,AB=4,AD=3,OF=1,則四邊形BCEF的周長為( )
A. 8 B. 9 C. 12 D. 13
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一粒木質中國象棋子“兵”,它的正面雕刻一個“兵”字,它的反面是年平的.將它從一定高度下擲,落地反彈后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的兩面不均勻,為了估計“兵”字面朝上的概率,某實驗小組做了棋子下擲實驗,實驗數據如下表:
實驗次數 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上頻數 | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
相應頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.56 | 0.55 |
(1)請將數據補充完整;
實驗次數 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“兵”字面朝上頻數 | 14 | 38 | 47 | 52 | 66 | 78 | 88 | |
相應頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.56 | 0.55 |
(2)畫出“兵”字面朝上的頻率分布折線圖;
(3)如果實驗繼續(xù)進行下去,根據上表的數據,這個實驗的頻率將穩(wěn)定在它的概率附近,請你估計這個概率是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com