【題目】如圖,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒2cm的速度沿BC向終點(diǎn)C移動(dòng),點(diǎn)Q以每秒1cm的速度沿DA向終點(diǎn)A移動(dòng),線段PQ與BD相交于點(diǎn)E,過E作EF∥BC交CD于點(diǎn)F,射線QF交BC的延長(zhǎng)線于點(diǎn)H,設(shè)動(dòng)點(diǎn)P、Q移動(dòng)的時(shí)間為t(單位:秒,0<t<10).
(1)當(dāng)t為何值時(shí),四邊形PCDQ為平行四邊形?
(2)在P、Q移動(dòng)的過程中,線段PH的長(zhǎng)是否發(fā)生改變?如果不變,求出線段PH的長(zhǎng);如果改變,請(qǐng)說明理由.

【答案】
(1)解:∵AD∥BC,BC=20cm,AD=10cm,點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒2cm的速度沿BC向終點(diǎn)C移動(dòng),點(diǎn)Q以每秒1cm的速度沿DA向終點(diǎn)A移動(dòng),

∴DQ=t,PC=20﹣2t,

∵若四邊形PCDQ為平行四邊形,則DQ=PC,

∴20﹣2t=t,

解得:t=


(2)解:線段PH的長(zhǎng)不變,

∵AD∥BH,P、Q兩點(diǎn)的速度比為2:1,

∴△QED∽△PEB,QD:BP=1:2,

∴QE:EP=ED:BE=1:2,

∵EF∥BH,

∴ED:DB=EF:BC=1:3,

∵BC=20,

∴EF= ,

= ,

∴PH=20cm


【解析】(1)如果四邊形PCDQ為平行四邊形,則DQ=CP,根據(jù)P、Q兩點(diǎn)的運(yùn)動(dòng)速度,結(jié)合運(yùn)動(dòng)時(shí)間t,求出DQ、CP的長(zhǎng)度表達(dá)式,解方程即可;(2)PH的長(zhǎng)度不變,根據(jù)P、Q兩點(diǎn)的速度比,即可推出QD:BP=1:2,根據(jù)平行線的性質(zhì)推出三角形相似,得出相似比,即可推出PH=20.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分),還要掌握梯形的定義(一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:

(1)折疊數(shù)軸,若1表示的點(diǎn)與-1表示的點(diǎn)重合,則-2表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;

(2)折疊數(shù)軸,若-1表示的點(diǎn)與5表示的點(diǎn)重合,則4表示的點(diǎn)與 表示的點(diǎn)重合;

(3)已知數(shù)軸上點(diǎn)A表示的數(shù)是-1,點(diǎn)B表示的數(shù)是2,若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度在數(shù)軸上移動(dòng),點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度在數(shù)軸上移動(dòng),且點(diǎn)A始終在點(diǎn)B的左側(cè),求經(jīng)過幾秒時(shí),A、B兩點(diǎn)的距離為6個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了數(shù)軸后,小亮決定對(duì)數(shù)軸進(jìn)行變化應(yīng)用:

(1)應(yīng)用一:已知點(diǎn)A在數(shù)軸上表示為,數(shù)軸上任意一點(diǎn)B表示的數(shù)為,則AB兩點(diǎn)的距離可以表示為 ;應(yīng)用這個(gè)知識(shí),請(qǐng)寫出當(dāng) 時(shí),有最小值為 .

(2)應(yīng)用二:從數(shù)軸上取下一個(gè)單位長(zhǎng)度的線段,第一次剪掉原長(zhǎng)的,第二次剪掉剩下的,依次類推,每次都剪掉剩下的,則剪掉5次后剩下線段長(zhǎng)度為 ;應(yīng)用這個(gè)原理,請(qǐng)計(jì)算:.

(3)應(yīng)用三:如圖,將一根拉直的細(xì)線看作數(shù)軸,一個(gè)三邊長(zhǎng)分別為的三角形的頂點(diǎn)與原點(diǎn)重合,邊在數(shù)軸正半軸上,將數(shù)軸正半軸的線沿的順序依次纏繞在三角形的邊上,負(fù)半軸的線沿的順序依次纏繞在三角形的邊上.

①如果正半軸的線纏繞了5圈,負(fù)半軸的線纏繞了3圈,求繞在點(diǎn)上的所有數(shù)之和;

②如果正半軸的線不變,將負(fù)半軸的線拉長(zhǎng)一倍,即原線上的點(diǎn)的位置對(duì)應(yīng)著拉長(zhǎng)后的數(shù),并將三角形向正半軸平移一個(gè)單位后再開始繞,求繞在點(diǎn)且絕對(duì)值不超過100的所有數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是邊AD上任意一點(diǎn),BE的垂直平分線FG交對(duì)角AC于點(diǎn)F.求證:(1)BFDF;(2)BFFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近兩年,國(guó)際市場(chǎng)黃金價(jià)格漲幅較大,中國(guó)交通銀行推出沃德金的理財(cái)產(chǎn)品,即以黃金為投資產(chǎn)品,投資者從黃金價(jià)格的上漲中賺取利潤(rùn).上周五黃金的收盤價(jià)為285/克,下表是本周星期一至星期五黃金價(jià)格的變化情況.(注:星期一至星期五開市,星期六.星期日休市)

星期

收盤價(jià)的變化(與前一天收盤價(jià)比較)

+7

+5

+8

問:(1)本周星期三黃金的收盤價(jià)是多少?

(2)本周黃金收盤時(shí)的最高價(jià).最低價(jià)分別是多少?

(3)上周,小王以周五的收盤價(jià)285/克買入黃金1000克,已知買入與賣出時(shí)均需支付成交金額的千分之五的交易費(fèi),賣出黃金時(shí)需支付成交金額的千分之三的印花稅.本周,小王以周五的收盤價(jià)全部賣出黃金1000克,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算: +( 0+|﹣1|;
(2)先化簡(jiǎn),再求值:(x+2)2+x(2﹣x),其中x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知x-1,求x2+3x-1的值;

(2)若|x-4|++(z+27)2=0,求的值;

(3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面一段:

計(jì)算

觀察發(fā)現(xiàn),上式從第二項(xiàng)起,每項(xiàng)都是它前面一項(xiàng)的倍,如果將上式各項(xiàng)都乘以,所得新算式中除個(gè)別項(xiàng)外,其余與原式中的項(xiàng)相同,于是兩式相減將使差易于計(jì)算.

解:設(shè),

-①得,則

上面計(jì)算用的方法稱為錯(cuò)位相減法,如果一列數(shù),從第二項(xiàng)起每一項(xiàng)與前一項(xiàng)之比都相等(本例中是都等于),那么這列數(shù)的求和問題,均可用上述錯(cuò)位相減法來解決.

下面請(qǐng)你觀察算式是否具備上述規(guī)律?若是,請(qǐng)你嘗試用錯(cuò)位相減法計(jì)算上式的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案