【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC于點(diǎn)D,若AC=5,BC=12.求點(diǎn)D到AB的距離.
【答案】
【解析】試題分析:過(guò)點(diǎn)D作DE⊥AB于E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得CD=DE,然后利用“HL”證明△ACD和△AED全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AC,表示出BE,設(shè)DE=x,表示出BD,然后利用勾股定理列式計(jì)算即可得解.
試題解析:
作DE⊥AB于點(diǎn)E,
∵∠C=90°,AC=5,BC=12.∴AB=13
∵AD平分∠BAC,∠C=90°,DE⊥AB
∴DC=DE,
∴△AEH≌△CEB.
∴AE=AC=5,BE=13-5=8
設(shè)DE=x,則DC=x,BD=12-x,
在Rt△BDE中,∵DE2+BE2=BD2 ∴x2+82=(12-x) 2
得x=
答:點(diǎn)D到AB的距離為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=2x2 , y=﹣2x2 , y=x2共有的性質(zhì)是( 。
A.開(kāi)口向下
B.對(duì)稱軸是y軸
C.都有最低點(diǎn)
D.y的值隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線經(jīng)過(guò)點(diǎn)M(1,3)和N(3,5)
(1)試判斷該拋物線與x軸交點(diǎn)的情況;
(2)平移這條拋物線,使平移后的拋物線經(jīng)過(guò)點(diǎn)A(﹣2,0),且與y軸交于點(diǎn)B,同時(shí)滿足以A、O、B為頂點(diǎn)的三角形是等腰直角三角形,請(qǐng)你寫(xiě)出平移過(guò)程,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(x1,y1)、B(x2,y2)在一次函數(shù)y=-2x+b的圖象上,若x1<x2,則y1______y2(填“<”或“>”或“=”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn),如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或,這個(gè)點(diǎn)叫做它們的.這兩個(gè)圖形在旋轉(zhuǎn)后能重合的對(duì)應(yīng)點(diǎn)叫做關(guān)于對(duì)稱中心的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】角的內(nèi)部到角的兩邊的相等的點(diǎn)在角的上;因此判定角平分線,需要滿足兩個(gè)條件:“”和“”.其一般思路是:“作垂直,證相等”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P1(﹣2,y1),P2(1,y2)是函數(shù)y=﹣2x+1圖象上的兩個(gè)點(diǎn),則y1與y2的大小關(guān)系是( 。
A.y1>y2B.y1<y2C.y1=y2D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖.
第一步:如圖①,將平行四邊形紙片沿對(duì)角線BD剪開(kāi),得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(kāi)(E為BD上任意一點(diǎn)),得到△ABE和△ADE紙片;
第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;
第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過(guò)來(lái)使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過(guò)來(lái)使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè)).則由紙片拼成的五邊形PMQRN中,對(duì)角線MN長(zhǎng)度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com