【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1);
(2);
(3)(4).
【答案】(1)x1=﹣,x2=;(2)x1=3,x2=﹣3;(3)方程沒有實(shí)數(shù)根;(4)x1=2,x2=.
【解析】
(1)直接利用因式分解法求出解即可;
(2)先移項(xiàng),再利用因式分解法求出解即可;
(3)先判斷方程根的情況,可得到此方程沒有實(shí)數(shù)根;
(4)利用公式法求出解即可.
解:(1)分解因式得,(2x+7)(2x﹣7)=0,
∴2x+7=0或2x﹣7=0,
∴x1=﹣,x2=;
(2)移項(xiàng),得(x﹣3)2﹣2x(x﹣3)=0,
∴(x﹣3)(x﹣3﹣2x)=0,
∴x﹣3=0或﹣x﹣3=0,
∴x1=3,x2=﹣3;
(3)∵a=1,b=1,c=3,
∴△=12﹣4×1×3=﹣11<0,
∴方程沒有實(shí)數(shù)根;
(4)∵a=2,b=﹣1,c=﹣6,
∴△=(﹣1)2﹣4×2×(﹣6)=49>0,
∴,
∴x1=2,x2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級10個班級師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計(jì)后發(fā)現(xiàn)唱歌類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預(yù)計(jì)所有演出節(jié)目交接用時共花15分鐘,若從20:00開始,22:30之前演出結(jié)束,問參與的小品類節(jié)目最多能有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價(jià)、售價(jià)如下表所示.
價(jià)格/類型 | A型 | B型 |
進(jìn)價(jià)(元/盞) | 40 | 65 |
售價(jià)(元/盞) | 60 | 100 |
(1)若該商場購進(jìn)這批臺燈共用去2500元,問這兩種臺燈各購進(jìn)多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進(jìn)B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°,得到△ADE,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對應(yīng)點(diǎn)E落在BC邊上,連接BD.
(1)求證:DE⊥BC;
(2)若AC=3,BC=7,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聰聰、明明、伶伶、俐俐四人共同探究代數(shù)式的值的情況他們做了如下分工,聰聰負(fù)責(zé)找值為0時的值,明明負(fù)責(zé)找值為4時的值,伶伶負(fù)責(zé)找最小值,俐俐負(fù)責(zé)找最大值,幾分鐘,各自通報(bào)探究的結(jié)論,其中正確的是( )
(1)聰聰認(rèn)為找不到實(shí)數(shù),使的值為0;
(2)明明認(rèn)為只有當(dāng)時,的值為4;
(3)伶伶發(fā)現(xiàn)有最小值;(4)俐俐發(fā)現(xiàn)有最大值
A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(2)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=12,點(diǎn)E是BC的中點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)F處,連接FC,則sin∠ECF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AC=2AB,點(diǎn)D是AC的中點(diǎn),將一塊銳角為45°的直角三角板ADE如圖放置,連接BE,EC.下列判斷:①△ABE≌△DCE;②BE=EC;③BE⊥EC;④EC=DE.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于點(diǎn)E,且CD=AC,DF∥BC,分別與AB,AC交于點(diǎn)G,F.
(1)求證:GE=GF;
(2)填空:若BD=1,則DF的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個長方形的長和寬分別為x厘米和y厘米(x,y為正整數(shù)),如果將長方形的長和寬各增加5厘米得到新的長方形,面積記為,將長方形的長和寬各減少2厘米得到新的長方形,面積記為.
(1)請說明:與的差一定是7的倍數(shù).
(2)如果比大196,求原長方形的周長.
(3)如果一個面積為的長方形和原長方形能夠沒有縫隙沒有重疊的拼成一個新的長方形,請找出x與y的關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com