【題目】如圖在一塊直角三角形鐵皮廢料的內部剪下一個長方形盒蓋 ABCD,其中 AB BC 分別在兩直角邊上,設AB=x cm,BC 滿足關系式:﹣x+12, 長方形盒蓋的面積為 y cm2,則 x 的取值為多少時?y 可以取得最大值,最大值是多少?

【答案】 x=m 時,y 取得最大值,最大值為 15.

【解析】

根據(jù):長方形的面積=大三角形的面積-兩個小三角形的面積列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質求解可得.

根據(jù)題意得:y=30﹣(5﹣x)x(12﹣),

整理得 y=﹣x2+12x,

=﹣[x2﹣5x+( 2],

=﹣(x﹣ 2+15,

∵﹣<0,

x=m 時,y 取得最大值,最大值為 15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD的兩條對角線分別為68M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘇果超市用5000元購進一批新品種的蘋果進行試銷,由于試銷狀況良好,超市又調撥11000元資金購進該種蘋果,但這次的進價比試銷時每千克多了0.5元,購進蘋果的數(shù)量是試銷時的2倍。

(1)試銷時該品種蘋果的進價是每千克多少元?

(2)如果超市將該品種的蘋果按每千克7元定價出售,當大部分蘋果售出后,余下的400千克按定價的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

;

用配方法

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點Q與點BAC的同側,且AQ⊥AC

1)如圖1,點Q不與點A重合,連結CQAB于點P.設AQ=x,AP=y,求y關于x的函數(shù)解析式,并寫出自變量x的取值范圍;

2)是否存在點Q,使△PAQ△ABC相似,若存在,求AQ的長;若不存在,請說明理由;

3)如圖2,過點BBD⊥AQ,垂足為D.將以點Q為圓心,QD為半徑的圓記為⊙Q.若點C⊙Q上點的距離的最小值為8,求⊙Q的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市某一城市美化工程招標時,有甲、乙兩個工程隊投標,經(jīng)測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:

4a+b=0;9a+c3b;8a+7b+2c0x﹣1時,y的值隨x值的增大而增大;當函數(shù)值y<0時,自變量x的取值范圍是x<-1x>5.

其中正確的結論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20198月,第18屆世界警察和消防員運動會在成都舉行.我們在體育館隨機調查了部分市民當天的觀賽時間,并用得到的數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖,根據(jù)圖中信息完成下列問題:

1)將條形統(tǒng)計圖補充完整;

2)求抽查的市民觀賽時間的眾數(shù)、中位數(shù);

3)求所有被調查市民的平均觀賽時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育文化用品商店購進籃球和排球共200個,進價和售價如下表全部銷售完后共獲利潤2600元.

類別

價格

籃球

排球

進價(元/個)

80

50

售價(元/個)

95

60

1)求商店購進籃球和排球各多少個?

2)王老師在元旦節(jié)這天到該體育文化用品商店為學校買籃球和排球各若干個(兩種球都買了),商店在他的這筆交易中獲利100元王老師有哪幾種購買方案.

查看答案和解析>>

同步練習冊答案