如圖,邊長為3cm的正方形ABCD繞點(diǎn)C按順時(shí)針旋轉(zhuǎn)30°,后得到正方形EFCG,EF交AD于H,那么DH的長為          .
本題考查的是含有30°角的直角三角形的特性。連接CH,則由軸對(duì)稱性得∠DCH=30°故tan30°=又∵CD=3∴HD=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形中,過對(duì)角線交點(diǎn)的長是( ▲ )
A.2.5B.3C.3.4D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減少傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
小題1:求新傳送帶AC的長度(結(jié)果精確到0.1米);
小題2:求新傳送帶與舊傳送帶貨物著地點(diǎn)C、B之間的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)學(xué)課外興趣小組的同學(xué)們要測(cè)量被池塘相隔的兩棵樹A、B的距離,他們?cè)O(shè)計(jì)了如圖所示的測(cè)量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點(diǎn),其中3位同學(xué)分別測(cè)得三組數(shù)據(jù):(1) AC,∠ACB  (2) EF、DE、AD (3) CD,∠ACB,∠ADB其中能根據(jù)所測(cè)數(shù)據(jù)求得A、B兩樹距離的有 ( ▲   )

A..0組       B.一組         C.二組         D.三組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某貨船以24海里/時(shí)的速度將一批重要物資從處運(yùn)往正東方向的處,在點(diǎn)處測(cè)得某島在北偏東的方向上.該貨船航行分鐘后到達(dá)處,此時(shí)再測(cè)得該島在北偏東的方向上,已知在島周圍海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無觸礁危險(xiǎn)?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,∠C=90°,tanA,AC=3,則AB      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

放風(fēng)箏是大家喜愛的一種運(yùn)動(dòng).星期天的上午小明在大洲廣場(chǎng)上放風(fēng)箏.如圖他在A處時(shí)不小心讓風(fēng)箏掛在了一棵樹的樹梢上,風(fēng)箏固定在了D處.此時(shí)風(fēng)箏線AD與水平線的夾角為30°. 為了便于觀察.小明迅速向前邊移動(dòng)邊收線到達(dá)了離A處7米的B處,此時(shí)風(fēng)箏線BD與水平線的夾角為45°.已知點(diǎn)A、B、C在同一條直線上,∠ACD=90°.請(qǐng)你求出小明此吋所收回的風(fēng)箏線的長度是多少米?(本題中風(fēng)箏線均視為線段,≈1.414,≈1.732.最后結(jié)果精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

計(jì)算:

查看答案和解析>>

同步練習(xí)冊(cè)答案