【題目】為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖解答下列問題:

1)扇形統(tǒng)計圖中“戲曲”部分對應(yīng)的扇形的圓心角為   度;

2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.

【答案】(1)28.8;(2)

【解析】

1)用喜歡聲樂的人數(shù)除以它所占百分比即可得到調(diào)查的總?cè)藬?shù),用總?cè)藬?shù)分別減去喜歡舞蹈、樂器、和其它的人數(shù)得到喜歡戲曲的人數(shù),即可得出答案;

2)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好選中①舞蹈、③聲樂兩項活動的結(jié)果數(shù),然后根據(jù)概率公式計算.

1)抽查的人數(shù)=8÷16%50(名);

喜歡戲曲活動項目的人數(shù)=5012168104(人);

扇形統(tǒng)計圖中戲曲部分對應(yīng)的扇形的圓心角為360°×28.8°

故答案為:28.8;

2)舞蹈、樂器、聲樂、戲曲的序號依次用①②③④表示,

畫樹狀圖:

共有12種等可能的結(jié)果數(shù),其中恰好選中①舞蹈、③聲樂兩項活動的有2種情況,

所有故恰好選中舞蹈、聲樂兩項活動的概率=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮晚上在廣場散步,圖中線段AB表示站立在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈的位置.

1)請你在圖中畫出小亮站在AB處的影子BE;

2)小亮的身高為1.6m,當(dāng)小亮離開燈桿的距離OB2.4m時,影長為1.2m,若小亮離開燈桿的距離OD6m時,則小亮(CD)的影長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于兩點,與反比例函數(shù)交于點的坐標(biāo)為軸于點

1)點的坐標(biāo)為 ;

2)若點的中點,求反比例函數(shù)的解析式;

3)在(2)條件下,以為邊向右作正方形于點直接寫出的周長與的周長的比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-1,0),B30)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標(biāo)為m0m3),連接CD,BDBC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以BC,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,D,E是半圓上任意兩點,連結(jié)AD,DE,AEBD相交于點C,要使ADCABD相似,可以添加一個條件.下列添加的條件其中錯誤的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中,AE平分DAC,AECD于點FCEAE,垂足為點E,EGCD,垂足為點G,點H在邊BC上,BHDF,連接AHFH,FHAC交于點M.下面結(jié)論:FH2BH;ACFH;DF1 EG2FGDG.其中正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作⊙O,交BC于點D,過點 DDEAC,垂足為E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為2,∠A60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】植樹節(jié)來臨之際,學(xué)校準(zhǔn)備購進(jìn)一批樹苗,已知2棵甲種樹苗和5棵乙種樹苗共需113元;3棵甲種樹苗和2棵乙種樹苗共需87元.

(1)求一棵甲種樹苗和一棵乙種樹苗的售價各是多少元?

(2)學(xué)校準(zhǔn)備購進(jìn)這兩種樹苗共100棵,并且乙種樹苗的數(shù)量不多于甲種樹苗數(shù)量的2倍,請設(shè)計出最省錢的購買方案,并求出此時的總費用.

查看答案和解析>>

同步練習(xí)冊答案