(2010•宣武區(qū)一模)已知:如圖,四邊形ABCD是正方形,G是BC上的一點,DE⊥AG于E,BF⊥AG于F.
(1)求證:△ABF≌△DAE;
(2)判斷AF與EF+FB有何數(shù)量關系?并說明理由.

【答案】分析:(1)根據(jù)正方形的四條邊都相等可得AD=AB,因為∠BAF+∠DAE=90°,∠BAF+∠ABF=90°,所以∠ABF=∠DAE,利用角角邊定理△ABF和△DAE全等;
(2)根據(jù)全等三角形對應邊相等,AE=BF,所以AF=EF+FB.
解答:(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵DE⊥AG于E,BF⊥AG于F,
∴∠AFB=∠DEA=90°,
∵∠BAF+∠DAE=90°,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(AAS);

(2)AF=EF+FB.
理由:∵△ABF≌△DAE,
∴AE=BF,
∵AF=AE+EF,
∴AF=EF+FB.
點評:本題主要利用正方形四條邊都相等和每個角都是直角的性質(zhì)以及全等三角形的判定定理和性質(zhì)定理,熟練掌握性質(zhì)和定理是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學模擬試卷(02)(解析版) 題型:填空題

(2010•宣武區(qū)一模)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市宣武區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•宣武區(qū)一模)已知:將函數(shù)的圖象向上平移2個單位,得到一個新的函數(shù)圖象.
(1)寫出這個新的函數(shù)的解析式;
(2)若平移前后的這兩個函數(shù)圖象分別與y軸交于O,A兩點,與直線交于C,B兩點.試判斷以A,B,C,O四點為頂點四邊形形狀,并說明理由;
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)的圖象一部分,求滿足條件的實數(shù)b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市宣武區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2010•宣武區(qū)一模)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省揚州市揚州中學西區(qū)校中考數(shù)學三模試卷(解析版) 題型:填空題

(2010•宣武區(qū)一模)如圖,在第一象限內(nèi)作與x軸的夾角為30°的射線OC,在射線OC上取一點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P,O,Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市宣武區(qū)中考數(shù)學一模試卷(解析版) 題型:選擇題

(2010•宣武區(qū)一模)某次樂器比賽共有11名選手參加且他們的得分都互不相同.現(xiàn)在知道這次比賽按選手得分由高到低順序設置了6個獲獎名額.若已知某位選手參加這次比賽的得分,要判斷他能否獲獎,則下列描述選手比賽成績的統(tǒng)計量中,只需要知道( )
A.方差
B.平均數(shù)
C.眾數(shù)
D.中位數(shù)

查看答案和解析>>

同步練習冊答案