【題目】如圖,已知BDAC,EFAC,垂足分別為D、F,∠1=∠2,請將證明∠ADG=∠C過程填寫完整.

證明:BDAC,EFAC(已知)

∴∠BDC=∠EFC90°   

BD   

2=∠3   

又∵∠1=∠2(已知)

∴∠1=∠3(等量代換)

DG   

∴∠ADG=∠C   

【答案】垂直的定義;EF;兩直線平行,同位角相等;BC;兩直線平行,同位角相等.

【解析】

根據(jù)垂直求出∠BDC=EFC=90°,根據(jù)平行線的判定得出BDEF,根據(jù)平行線的性質(zhì)得出∠2=3,求出∠1=3,根據(jù)平行線的判定得出DGBC即可.

證明:∵BDAC,EFAC,

∴∠BDC=EFC=90°垂直的定義

BDEF,

∴∠2=3兩直線平行,同位角相等),

又∵∠1=∠2(已知)

∴∠1=∠3(等量代換)

DGBC,

∴∠ADG=C兩直線平行,同位角相等

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】星光廚具店購進電飯煲和電壓鍋兩種電器進行銷售其進價與售價如表

進價(元/臺)

售價(元/臺)

電飯煲

200

250

電壓鍋

160

200

1)一季度,廚具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?

2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進貨廚具店賺錢最多?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB與x軸的交點C的坐標及AOB的面積;

3)求不等式的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校一幢教學大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度(測角器的高度忽略不計,結果精確到0.1米參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個平行四邊形的一條邊長為5,兩條對角線的長分別為68,則它的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺.已知用90萬元購買A型號的污水處理設備的臺數(shù)與用75萬元購買B型號的污水處理設備的臺數(shù)相同,每臺設備價格及月處理污水量如下表所示:

污水處理設備

A型

B型

價格(萬元/臺)

m

m-3

月處理污水量(噸/臺)

220

180

(1)求m的值;

(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問有多少種購買方案?并求出每月最多處理污水量的噸數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的高,CEABC的中線.

1)若AD12,BD16,求DE;

2)已知點F是中線CE的中點,連接DF,若∠AEC57°,∠DFE90°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為BD(如圖乙).再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.

查看答案和解析>>

同步練習冊答案