(1999•成都)m為何整數(shù)時(shí),關(guān)于x的方程3x2+6x+m=0有兩個(gè)負(fù)實(shí)根?
【答案】分析:若方程有兩個(gè)負(fù)實(shí)根,可得到兩個(gè)條件:①方程的△>0,②兩根的積大于0;可列不等式組求出m的取值范圍,進(jìn)而可求出m的整數(shù)值.
解答:解:設(shè)方程3x2+6x+m=0的兩個(gè)負(fù)實(shí)根分別為x1、x2
則有,即
∴0<m≤3;(2分)
∴m=1,2,3.(1分)
點(diǎn)評(píng):此題主要考查的是一元二次方程根與系數(shù)的關(guān)系及根的判別式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•成都)已知直線y=x和y=-x+m,二次函數(shù)y=x2+px+q的圖象的頂點(diǎn)為M.
(1)若M恰好在直線y=x與y=-x+m的交點(diǎn)處,試證明:無論m取何實(shí)數(shù)值,二次函數(shù)y=x2+px+q的圖象與直線y=-x+m總有兩個(gè)不同的交點(diǎn).
(2)在(1)的條件下,若直線y=-x+m過點(diǎn)D(0,-3),求二次函數(shù)y=x2+px+q的表達(dá)式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數(shù)y=x2+px+q的圖象與y軸交于點(diǎn)C,與x軸的左交點(diǎn)為A,試在直線y=x上求異于M的點(diǎn)P,使點(diǎn)P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(1999•成都)已知直線y=kx+b經(jīng)過點(diǎn)A(2,4)和點(diǎn)(0,-2),那么這條直線的解析式是( )
A.y=-2x+3
B.y=3x-2
C.y=-3x+2
D.y=2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•成都)已知直線y=x和y=-x+m,二次函數(shù)y=x2+px+q的圖象的頂點(diǎn)為M.
(1)若M恰好在直線y=x與y=-x+m的交點(diǎn)處,試證明:無論m取何實(shí)數(shù)值,二次函數(shù)y=x2+px+q的圖象與直線y=-x+m總有兩個(gè)不同的交點(diǎn).
(2)在(1)的條件下,若直線y=-x+m過點(diǎn)D(0,-3),求二次函數(shù)y=x2+px+q的表達(dá)式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數(shù)y=x2+px+q的圖象與y軸交于點(diǎn)C,與x軸的左交點(diǎn)為A,試在直線y=x上求異于M的點(diǎn)P,使點(diǎn)P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(1999•成都)已知直線y=kx+b經(jīng)過點(diǎn)A(2,4)和點(diǎn)(0,-2),那么這條直線的解析式是( )
A.y=-2x+3
B.y=3x-2
C.y=-3x+2
D.y=2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(1999•成都)如圖,已知ABCD是正方形,以CD為一邊向CD兩旁作等邊三角形PCD和等邊三角形QCD,那么tan∠PQB的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案