【題目】對于三個數(shù)a、b、c,用Ma,b,c表示這三個數(shù)的中位數(shù),用maxa,b,c表示這三個數(shù)中最大數(shù),例如:M2,1,01,max2,1,00,max2,1,a解決問題:Msin45,cos60,tan60_____,如果max3,53x,2x63,則x的取值范圍為______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+6與反比例函數(shù)y=(k>0)的圖象交于點M、N,與x軸、y軸分別交于點B、A,作ME⊥x軸于點E,NF⊥x軸于點F,過點E、F分別作EG∥AB,FH∥AB,分別交y軸于點G、H,ME交HF于點K,若四邊形MKFN和四邊形HGEK的面積和為12,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是BC邊的中點,連接AD,分別過點A,C作AE∥BC,CE∥AD交于點E,連接DE,交AC于點O.
(1)求證:四邊形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個數(shù)是( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知拋物線經(jīng)過坐標原點O和x軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求直線y=3與拋物線交點的坐標;
(2)將矩形ABCD以每秒1個單位長度的速度從圖⑴所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖(2)所示).
①當時,判斷點P是否在直線ME上,并說明理由;
②設以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售 A、B 兩種品牌的彩色電視機,A、B 兩種彩電的進價每臺分別為2000 元、1600元.一 月 份 A、B 兩 種 彩 電 每 臺 銷 售 價 分 別 為 2700 元、2100 元,月 利 潤 為 12000元.為了增加利潤,二月份營銷人員提供了兩種銷售策略:
策略一: A 種彩電每臺降價100元,B 種彩電每臺降價80元,估計月銷售量分別增長30%、40%;
策略二: A 種彩電每臺降價 150 元,B 種彩電每臺降價 100 元,估計月銷售量都增長50%.
根據(jù)以上信息完成下列各題:
(1)求一月份 A、B 兩種彩電的銷售量.
(2)二月份這兩種策略是否能增加利潤?
(3)二月份該商店應該采用上述兩種銷售策略中的哪一種,方能使商店所獲得的利潤較多?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com