如圖3, A、B兩點在數(shù)軸上表示的數(shù)分別為、,下列式子成立的是

(A)>0          (B)<0

(C)>0 (D)>0

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,要測量山腳下兩點A、B的距離.可取點C,分別定出線段AC,BC的中點D,E,現(xiàn)測得DE的長為50m,則可計算出A,B兩點的距離為
100
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,AC兩點的坐標(biāo)分別為A(6,0),C(0,3),直線y=-
3
4
x+
9
2
與BC邊相交于點D.
(1)求點D的坐標(biāo);
(2)若上拋物線y=ax2+bx(a≠0)經(jīng)過A,D兩點,試確定此拋物線的解析式;
(3)設(shè)(2)中的拋物線的對稱軸與直線AD交點M,點P為對稱軸上一動點,以P、A、M為頂點的三角形與△ABD相似,求符合條件的所有點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)1471年,德國數(shù)學(xué)家米勒提出了雕塑問題:假定有一個雕塑高AB=3米,立在一個底座上,底座的高BC=2.2米,一個人注視著這個雕塑并朝它走去,這個人的水平視線離地1.7米,問此人應(yīng)站在離雕塑底座多遠處,才能使看雕塑的效果最好,所謂看雕塑的效果最好是指看雕塑的視角最大,問題轉(zhuǎn)化為在水平視線EF上求使視角最大的點,如圖:過A、B兩點,作一圓與EF相切于點M,你能說明點M為所求的點嗎?并求出此時這個人離雕塑底座的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,A、B兩點被池塘隔開,為測量AB兩點的距離,在AB外選一點C,連接AC和BC,并分別找出AC和BC的中點M、N,則MN是△ABC的中位線,根據(jù)三角形的中位線定理:三角形的中位線平行于第三邊且等于第三邊的一半,如果測得MN=20m,那么AB=2×20m=40m.
(1)小紅說:測AB距離也可以由圖2所示用三角形全等知識來解決,請根據(jù)題意填空:延長AC到D,使CD=
AC
AC
,延長BC到E,使CE=
BC
BC
,由全等三角形得,AB=ED;
(2)小華說:測AB距離也可以由三角形相似的知識來設(shè)計測量方法,求出AB的長;請根據(jù)題意在如圖3中畫出相應(yīng)的測量圖形:延長AC到H,使CH=2AC,延長BC到Q,使CQ=2BC,連接QH;若測得QH的長是400米,你能測出AB的長嗎?若能,請測出;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,連接A、B兩點的路徑有4條,其中第
條路徑最短,其根據(jù)是
兩點之間線段最短
兩點之間線段最短

查看答案和解析>>

同步練習(xí)冊答案