【題目】若的度數是的度數的k倍,則規(guī)定是的k倍角.
(1)若∠M=21°17',則∠M的5倍角的度數為 ;
(2)如圖1,OB是∠AOC的平分線,OD是∠COE的平分線,若∠AOC=∠COE,請直接寫出圖中∠AOB的所有3倍角;
(3)如圖2,若∠AOC是∠AOB的5倍角,∠COD是∠AOB的3倍角,且∠AOC和∠BOD互為補角,求∠AOD的度數.
【答案】(1)106°25';(2)∠AOD,∠BOE;(3)120°.
【解析】
(1)根據題意,列式計算即可得到答案;
(2)由角平分線性質定理,結合∠AOC=∠COE,得到∠AOB=∠BOC=∠COD=∠DOE,即可得到∠AOD=3∠AOB,∠BOE=3∠AOB;
(3)設∠AOB=x,則∠AOC=5x,∠BOC=4x,∠COD=3x,則利用∠AOC和∠BOD互為補角的關系,列出方程,即可得到x的值,然后得到答案.
解:(1);
故答案為: .
(2)∵OB是∠AOC的平分線,OD是∠COE的平分線,∠AOC=∠COE,
∴∠AOB=∠BOC=∠COD=∠DOE,
∴∠AOD=3∠AOB,∠BOE=3∠AOB;
∴圖中∠AOB的所有3倍角有:∠AOD,∠BOE;
(3)設∠AOB=x,則∠AOC=5x,∠COD=3x.
∴∠BOC=4x,
∵∠AOC和∠BOD互為補角,
∴∠AOC+∠BOD=∠AOC+∠BOC+∠COD=180°,
即5x+7x=180°,
解得:x=15°.
∴∠AOD=8x=120°.
科目:初中數學 來源: 題型:
【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則6小時可到達乙地.
(1)寫出時間t(時)關于速度v(千米/時)的函數關系式,并畫出函數圖象.
(2)若這輛汽車需在5小時內從甲地到乙地,則此時汽車的平均速度至少應是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AD = 6,AB = ,∠A = 45°.過點B、D分別做BE⊥AD,DF⊥BC,交AD、BC與點E、F.點Q為DF邊上一點,∠DEQ = 30°,點P為EQ的中點,過點P作直線分別與AD、BC相交于點M、N.若MN = EQ,則EM的長等于___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋里裝有3個球,其中2個紅球,1個白球,它們除顏色外其余都相同.
(1)求摸出1個球是白球的概率;
(2)摸出1個球,記下顏色后放回,并攪勻,再摸出1個球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表);
(3)現再將n個白球放入布袋,攪勻后,使摸出1個球是白球的概率為,求n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學對本校500名畢業(yè)生中考體育加試測試情況進行調查,根據男生1 000m及女生800m測試成績整理、繪制成如下不完整的統(tǒng)計圖(圖①、圖②),請根據統(tǒng)計圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有________人,女生有________人;
(2)扇形統(tǒng)計圖中a=________,b=________;
(3)補全條形統(tǒng)計圖(不必寫出計算過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C是正方形網格中的三個格點.
(1)①畫射線AC;
②畫線段BC;
③過點B畫AC的平行線BD;
④在射線AC上取一點E,畫線段BE,使其長度表示點B到AC的距離;
(2)在(1)所畫圖中,
①BD與BE的位置關系為 ;
②線段BE與BC的大小關系為BE BC(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果兩個角之差的絕對值等于45°,則稱這兩個角互為“半余角”,即若|∠α-∠β |=45°,則稱∠α、∠β互為半余角.(注:本題中的角是指大于0°且小于180°的角)
(1)若∠A=80°,則∠A的半余角的度數為 ;
(2)如圖1,將一長方形紙片ABCD沿著MN折疊(點M在線段AD上,點N在線段CD上)使點D落在點D′處,若∠AMD′與∠DMN互為“半余角”,求∠DMN的度數;
(3)在(2)的條件下,再將紙片沿著PM折疊(點P在線段BC上),點A、B分別落在點A′、B′處,如圖2.若∠AMP比∠DMN大5°,求∠A′MD′的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
由于發(fā)展時間早、發(fā)展速度快,經過20多年大規(guī)模的高速開發(fā)建設,北京四環(huán)內,甚至五環(huán)內可供開發(fā)建設的土地資源越來越稀缺,更多的土地供應將集中在五環(huán)外,甚至六環(huán)外的遠郊區(qū)縣.
據中國經濟網2017年2月報道,來自某市場研究院的最新統(tǒng)計,2016年,剔除了保障房后,在北京新建商品住宅交易量整體上漲之時,北京各區(qū)域的新建商品住宅交易量則是有漲有跌其中,昌平、通州、海淀、朝陽、西城、東城六區(qū)下跌,跌幅最大的為朝陽區(qū),新建商品住宅成交量比2015年下降了而延慶、密云、懷柔、平谷、門頭溝、房山、順義、大興、石景山、豐臺十區(qū)的新建商品住宅成交量表現為上漲,漲幅最大的為順義區(qū),比2015年上漲了另外,從環(huán)線成交量的占比數據上,同樣可以看出成交日趨郊區(qū)化的趨勢根據統(tǒng)計,2008年到2016年,北京全市成交的新建商品住宅中,二環(huán)以內的占比逐步從下降到了;二、三環(huán)之間的占比從下降到了;三、四環(huán)之間的占比從下降到了;四、五環(huán)之間的占比從下降到了也就是說,整體成交中位于五環(huán)之內的新房占比,從2008年的下降到了2016年的,下滑趨勢非常明顯由此可見,新房市場的遠郊化是北京房地產市場發(fā)展的大勢所趨注:占比,指在總數中所占的比重,常用百分比表示
根據以上材料解答下列問題:
補全折線統(tǒng)計圖;
根據材料提供的信息,預估2017年位于北京市五環(huán)之內新建商品住宅成交量占比約______ ,你的預估理由是______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,F為弦AC的中點,連接OF并延長交于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=a,寫出求四邊形ACDE面積的思路.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com