(2012•溧水縣一模)如圖,在△ABD中,∠A=∠B=30°,以AB邊上一點O為圓心,過A,D兩點作⊙O交AB于C.
(1)判斷直線BD與⊙O的位置關(guān)系,并說明理由;
(2)連接CD,若CD=5,求AB的長.
分析:(1)直線BD與⊙O相切.連接OD,由已知條件證明OD⊥BD,即可
(2)由(1)知,∠ODA=∠DAB=30°,又因為圓的半徑相等所以可證明△DOC是等邊三角形,利用直角三角形的性質(zhì)和等邊三角形的性質(zhì)即可求出AB的長.
解答:(1)直線BD與⊙O相切.理由如下:
解:如圖,連接OD,
∵∠ODA=∠DAB=∠B=30°,
∴∠ODB=180°-∠ODA-∠DAB-∠B
=180°-30°-30°-30°=90°,
即OD⊥BD,
∴直線BD與⊙O相切;
(2)解:由(1)知,∠ODA=∠DAB=30°,
∴∠DOB=∠ODA+∠DAB=60°,
又∵OC=OD,
∴△DOC是等邊三角形,
∴OA=OD=CD=5.
又∵∠B=30°,∠ODB=90°,
∴OB=2OD=10.
∴AB=OA+OB=5+10=15.
點評:本題考查了切線的判定和性質(zhì)以及等邊三角形的判定和性質(zhì)、直角三角形的性質(zhì),題目的綜合性不小,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)七年級我們曾學(xué)過“兩點之間線段最短”的知識,?衫盟鼇斫鉀Q兩條線段和最小的相關(guān)問題,下面是大家非常熟悉的一道習(xí)題:
如圖1,已知,A,B在直線l的同一側(cè),在l上求作一點,使得PA+PB最。
我們只要作點B關(guān)于l的對稱點B′,(如圖2所示)根據(jù)對稱性可知,PB=PB'.因此,求AP+BP最小就相當于求AP+PB′最小,顯然當A、P、B′在一條直線上時AP+PB′最小,因此連接AB',與直線l的交點就是要求的點P.
有很多問題都可用類似的方法去思考解決.
探究:
(1)如圖3,正方形ABCD的邊長為2,E為BC的中點,P是BD上一動點.連接EP,CP,則EP+CP的最小值是
5
5
;
運用:
(2)如圖4,平面直角坐標系中有三點A(6,4)、B(4,6)、C(0,2),在x軸上找一點D,使得四邊形ABCD的周長最小,則點D的坐標應(yīng)該是
(2,0)
(2,0)
;

操作:
(3)如圖5,A是銳角MON內(nèi)部任意一點,在∠MON的兩邊OM,ON上各求作一點B,C,組成△ABC,使△ABC周長最小.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)已知a2-a-1=0,則a3-2a+2011=
2012
2012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)計算:(
1
2
)-1-20120+|-2
3
|-
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)解不等式組
3x-1≤2
2-
2-5x
3
<x
并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)在四邊形ABCD中,對角線AC與BD交于點O,△ABO≌△CDO.
(1)求證:四邊形ABCD為平行四邊形;
(2)若∠ABO=∠DCO,求證:四邊形ABCD為矩形.

查看答案和解析>>

同步練習(xí)冊答案