在數(shù)學活動小組中,大家討論這樣的問題:若已知條件符合三角形全等時,即已知三邊,已知兩邊及它們的夾角,已知兩角及它們的夾邊或已知兩角及其中一角的對邊求作三角形時,大家作出的三角形是完全重合的,那么如果有這樣一個問題:

已知:線段a、b和∠α.

求作:△ABC,使其有一個內角等于∠α,且∠α的對邊等于a,另一邊等于b.

大家一齊動手作起來,突然小紅和小剛發(fā)現(xiàn)自己作的三角形是正確的,但和對方的卻不一樣,大家一齊討論時,覺得他們作得都有道理,你能作出小紅和小剛兩人所作的三角形嗎?請你嘗試敘述一下這個題有幾個解?為什么?小紅和小剛各自所作出的一個三角形是否完全正確?

答案:兩個解,作出一個三角形不完全正確.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

九(1)班數(shù)學興趣小組在社會實踐活動中,進行了如下的課題研究:用一定長度的鋁合金材料,將它設計成外觀為長方形的三種框架,使長方形框架面積最大.
小組討論后,同學們做了以下三種試驗:
精英家教網(wǎng)精英家教網(wǎng)
請根據(jù)以上圖案回答下列問題:
(1)在圖案1中,如果鋁合金材料總長度(圖中所有黑線的長度和)為6m,當AB為1m,長方形框架ABCD的面積是
 
m2
(2)在圖案2中,如果鋁合金材料總長度為6m,設AB為xm,長方形框架ABCD的面積為S=
 
(用含x的代數(shù)式表示);當AB=
 
m時,長方形框架ABCD的面積S最大;在圖案3中,如果鋁合金材料總長度為lm,設AB為xm,當AB=
 
m時,長方形框架ABCD的面積S最大.
(3)經(jīng)過這三種情形的試驗,他們發(fā)現(xiàn)對于圖案4這樣的情形也存在著一定的規(guī)律.探索:如圖案4如果鋁合金材料總長度為lm共有n條豎檔時,那么當豎檔AB多少時,長方形框架ABCD的面積最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•連云港)小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(
9
2
,
9
2
)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

初三(1)班數(shù)學興趣小組在社會實踐活動中,進行了如下的課題研究:用一定長度的鋁合金材料,將它設計成外觀為長方形的三種框架,使長方形框架面積最大.
小組討論后,同學們做了以下三種試驗:

請根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長度(圖中所有黑線的長度和)為6米,當AB為1米,長方形框架ABCD的面積是
4
3
4
3
m2;
(2)在圖案(2)中,如果鋁合金材料總長度為6米,設AB為x米,長方形框架ABCD的面積為S=
-x2+2x
-x2+2x
(用含x的代數(shù)式表示);當AB=
1
1
時米,長方形框架ABCD的面積S最大;在圖案(3)中,如果鋁合金材料總長度為l米,設AB為x米,當AB是多少米時,長方形框架ABCD的面積S最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•婺城區(qū)二模)初三(1)班數(shù)學興趣小組在社會實踐活動中,進行了如下的課題研究:
用一長為18cm、寬為12cm的矩形鐵皮(如右圖),裁剪出一個扇形,使扇形的面積盡可能大.小組討論后,設計了以下三種方案:
(1)以CD為直徑畫。ㄈ鐖D1),則截得的扇形面積為
18π
18π
cm2;
(2)以C為圓心,CD為半徑畫弧(如圖2),則截得的扇形面積為
36π
36π
cm2;
(3)以BC為直徑畫弧(如圖3),則截得的扇形面積為
81
2
π
81
2
π
cm2;經(jīng)過這三種情形的研究,小明突然受到啟發(fā),他覺得下面這一方案更佳:圓心仍在BC邊上,以OC為半徑畫弧,切AD于E,交AB于F(如圖4).請你通過計算說明,小明的方案所截得的扇形面積更大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

七年級(2)班的“數(shù)學興趣小組”活動中,有8名同學藏在8個大盾牌后面.男同學的盾牌前面的結果是一個正數(shù),女同學的盾牌前面的結果是一個負數(shù).這8個盾牌如圖所示:請你通過計算,說出盾牌后面男、女同學各幾名?

查看答案和解析>>

同步練習冊答案