11.在數(shù)學課上,林老師在黑板上畫出如圖所示的圖形(其中點B、F、C、E在同一直線上),并寫出四個條件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.請你從這四個條件中選出三個作為題設(shè),另一個作為結(jié)論,組成一個真命題,并給予證明.
條件:①②③;結(jié)論:④.(均填寫序號)

分析 以①AB=DE、②BF=EC、③∠B=∠E為題設(shè),④∠1=∠2為結(jié)論,證△ABC≌△DEF可得.

解答 解:題設(shè)為①AB=DE,②BF=EC,③∠B=∠E,結(jié)論為④∠1=∠2;
∵BF=EC,
∴BF+FC=EC+FC,即BC=EF,
在△ABC和△DEF中,
∵$\left\{\begin{array}{l}{AB=DE}\\{∠B=∠E}\\{BC=EF}\end{array}\right.$,
∴△ABC≌△DEF(SAS),
∴∠1=∠2,
故答案為:①②③,④.

點評 本題主要考查命題與定理及全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:選擇題

20.滿足下列條件的△ABC,是直角三角形的有( 。﹤.
(1)∠A-∠B=∠C
(2)∠A:∠B:∠C=3:4:5
(3)∠A=2∠B=3∠C
(4)a=20,b=21,c=29
(5)a=7,b=8,c=10
(6)a=2,b=$\sqrt{3}$,c=$\sqrt{7}$(其中∠A、∠B、∠C是△ABC的三個內(nèi)角,a,b,c是△ABC的三條邊)
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

1.一組數(shù)據(jù)0,-1,4,2,x的極差是7,那么x的值是-3或6.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.解方程:3(y-5)2=2(y-5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.一個食堂需要購買盒子存放食物,盒子有A,B兩種型號,單個盒子的容量和價格如表,現(xiàn)有15升食物需要存放且要求每個盒子要裝滿.由于A型號盒子正要做促銷活動,購買三個及三個以上可一次性返現(xiàn)金4元,則購買盒子所需要最少費用為29元.
型號AB
單個盒子容量(升)23
單價(元)56

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

16.-104表示的數(shù)學意義是4個10相乘的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

3.有如下命題:①負數(shù)沒有立方根; ②一個實數(shù)的立方根不是正數(shù)就是負數(shù);③一個正數(shù)或負數(shù)的立方根與這個數(shù)同號; ④如果一個數(shù)的立方根是這個數(shù)本身,那么這個數(shù)是1或0.⑤無限小數(shù)就是無理數(shù); ⑥0.101001000100001  是無理數(shù).其中正確有③  (填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-15米,其中最高與最低處的差是45米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,已知AC平分∠BAD,CE⊥AB于點E,CF⊥AD于點F,且BC=CD.
(1)求證:△BCE≌△DCF;
(2)直接寫出線段AB、AD、DF的關(guān)系;
(3)若AB=15,AD=7,BC=5,求CE的長.

查看答案和解析>>

同步練習冊答案