【題目】如圖(1),∠AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將∠O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.
(1)①當(dāng)PC∥QB時,OQ= ;
②當(dāng)PC⊥QB時,求OQ的長.
(2)當(dāng)折疊后重疊部分為等腰三角形時,求OQ的長.
【答案】(1) 2 (2)2+2 , 2-2 (3)符合條件的點(diǎn)Q共有5個. ①當(dāng)點(diǎn)C在∠AOB內(nèi)部或一邊上時,OQ=2, ,2 ②當(dāng)點(diǎn)C在∠AOB的外部時,OQ=+, -.
【解析】試題分析:(1)①由平行線的性質(zhì)得出∠O=∠CPA,由折疊的性質(zhì)得出∠C=∠O,OP=CP,證出∠CPA=∠C,得出OP∥QC,證出四邊形OPCQ是菱形,得出OQ=OP=2cm即可;
②當(dāng)PC⊥QB時,分兩種情況:設(shè)OQ=xcm,證出△OPM是等腰直角三角形,得出OM= ,證出△CQM是等腰直角三角形,得出 ,得出方程解方程即可;(ii)同(i)得出: ,即可得出結(jié)論;
(2)當(dāng)折疊后重疊部分為等腰三角形時,符合條件的點(diǎn)Q共有5個;點(diǎn)C在∠AOB的內(nèi)部或一邊上時,由折疊的性質(zhì)、三角形內(nèi)角和定理以及解直角三角形即可求出OQ的長;點(diǎn)C在∠AOB的外部時,同理求出OQ的長即可;
試題解析:
(1)①當(dāng)PC∥QB時,∠O=∠CPA,
由折疊的性質(zhì)得:∠C=∠O,OP=CP,
∴∠CPA=∠C,
∴OP∥QC,
∴四邊形OPCQ是平行四邊形,
∴四邊形OPCQ是菱形,
∴OQ=OP=2cm;
②當(dāng)PC⊥QB時,分兩種情況:
如圖1所示:設(shè)OQ=xcm,
∵∠O=45°,
∴△OPM是等腰直角三角形,
∴OM= ,
∴QM= ,
由折疊的性質(zhì)得:∠C=∠O=45°,CQ=OQ=x,
∴△CQM是等腰直角三角形,
∴QC= ,
∴ ,
解得: ,
即OQ= ;
(ii)如圖2所示:
同(i)得:OQ=,
綜上所述:當(dāng)PC⊥QB時,OQ的長為 或 ;
(2)當(dāng)折疊后重疊部分為等腰三角形時,符合條件的點(diǎn)Q共有5個;
①點(diǎn)C在∠AOB的內(nèi)部時,四邊形OPCQ是菱形,OQ=OP=2cm;
②當(dāng)點(diǎn)C在∠AOB的一邊上時,△OPQ是等腰直角三角形,OQ= 或 ,
③當(dāng)點(diǎn)C在∠AOB的外部時,分兩種情況:
(i)如圖3所示:PM=PQ,則∠PMQ=∠PQM=∠O+∠OPQ,
由折疊的性質(zhì)得:∠OPQ=∠MPQ,
設(shè)∠OPQ=∠MPQ=x,
則∠PMQ=∠PQM=45°+x,
在△OPM中,由三角形內(nèi)角和定理得:45°+x+x+45°+x=180°,
解得:x=30°,
∴∠OPQ=30°,
作QN⊥OP于N,設(shè)ON=a,
∵∠O=45°,
則QN=ON=a,OQ= ,PN= ,
∵ON+PN=OP,
∴a+ ,
解得: ,
∴OQ= ;
(ii)如圖4所示:PQ=MQ,作QN⊥OA于N,
同①得:OQ= ;
綜上所述:當(dāng)折疊后重疊部分為等腰三角形時,OQ的長為2cm或 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求這個三角形的面積小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你利用上述方法求出△ABC的面積.
(2)在圖2中畫△DEF,DE、EF、DF三邊的長分別為、、
①判斷三角形的形狀,說明理由.
②求這個三角形的面積.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)是線段所在平面內(nèi)任意一點(diǎn),分別以、為邊,在同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在線段上移動時,線段與的數(shù)量關(guān)系是:________;
(2)如圖2,當(dāng)點(diǎn)在直線外,且,仍分別以、為邊,在 同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).(1)的結(jié)論是否還存在?若成立,請證明;若不成立,請說明理由.此時是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請求出的度數(shù);
(3)如圖3,在(2)的條件下,聯(lián)結(jié),求證: 平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點(diǎn)A表示的數(shù)為﹣1,正方形ABCD的面積為16.
(1)數(shù)軸上點(diǎn)B表示的數(shù)為 ;
(2)將正方形ABCD沿數(shù)軸水平移動,移動后的正方形記為A′B′C′D′,移動后的正方形A′B′C′D′與原正方形ABCD重疊部分的面積為S.
①當(dāng)S=4時,畫出圖形,并求出數(shù)軸上點(diǎn)A′表示的數(shù);
②設(shè)正方形ABCD的移動速度為每秒2個單位長度,點(diǎn)E為線段AA′的中點(diǎn),點(diǎn)F在線段BB′上,且BF=BB′.經(jīng)過t秒后,點(diǎn)E,F所表示的數(shù)互為相反數(shù),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的直角坐標(biāo)系中,解答下列問題:
(1)分別寫出A、B兩點(diǎn)的坐標(biāo);
(2)將△ABC向左平移3個單位長度,再向上平移5個單位長度,畫出平移后的△A1B1C1;
(3)求 △A1B1C1的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,邊長為a的正方形中有一個邊長為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個正方形.
(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請直接用含a,b的代數(shù)式表示S1,S2;
(2)請寫出上述過程所揭示的乘法公式;
(3)試?yán)眠@個公式計算:(2+1)(22+1)(24+1)(28+1)+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則要說明∠D′O′C′=∠DOC,需要證明△D′O′C′≌△DOC,則這兩個三角形全等的依據(jù)是__(寫出全等的簡寫).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)騎自行車去郊外春游,如圖表示他離家的距離y(千米)與所用的時間x(小時)之間關(guān)系的函數(shù)圖象.
(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方需 小時,
(2)小明出發(fā)兩個半小時離家 千米.
(3)小明出發(fā) 小時離家12千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知實(shí)數(shù)a、b在數(shù)軸上的位置如圖所示,化簡=_____________;
(2)已知正整數(shù),滿足,則整數(shù)對的個數(shù)是_______________;
(3)△ABC中,∠A=50°,高BE、CF所在的直線交于點(diǎn)O,∠BOC的度數(shù)__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com