如圖,Rt△ABC中,∠C=90°,∠A=30°,AB=6cm,將△ABC繞點(diǎn)C沿順時(shí)針?lè)较蛐D(zhuǎn)90°至△DEC的位置,再沿CB向左平移,使點(diǎn)E剛好落在斜邊AB上,那么△DEC向左平移的距離是   
【答案】分析:根據(jù)平移的概念知各點(diǎn)移動(dòng)的距離相等,并根據(jù)直角三角板的特點(diǎn)解答.
解答:解:設(shè)三角板向左平移后,與AB交于點(diǎn)F;故三角板向左平移的距離為EF的長(zhǎng).
∵AB=6cm,∠A=30°
∴BC=EC=3cm,AC=3 cm
∵EF∥BC,
=

∴EF=(3-)cm;
故三角板向左平移的距離為(3-)cm.
故填:3-
點(diǎn)評(píng):本題考查平移、旋轉(zhuǎn)的性質(zhì);平移的基本性質(zhì)是:平移不改變圖形的形狀和大。唤(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變,兩組對(duì)應(yīng)點(diǎn)連線的交點(diǎn)是旋轉(zhuǎn)中心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案