20.如圖,在四邊形ABCD中,點(diǎn)P是對角線BD的中點(diǎn),點(diǎn)E、F分別是AB、CD的中點(diǎn),AD=BC,∠PEF=22°,則∠PFE的度數(shù)是( 。
A.15°B.20°C.22°D.44°

分析 根據(jù)中位線定理和已知,證明△EPF是等腰三角形,由等腰三角形的性質(zhì)即可得出答案.

解答 解:∵在四邊形ABCD中,P是對角線BD的中點(diǎn),E,F(xiàn)分別是AB,CD的中點(diǎn),
∴FP,PE分別是△CDB與△DAB的中位線,
∴PF=$\frac{1}{2}$BC,PE=$\frac{1}{2}$AD,
∵AD=BC,
∴PF=PE,
故△EPF是等腰三角形.
∵∠PEF=22°,
∴∠PEF=∠PFE=22°.
故選:C.

點(diǎn)評 本題考查了三角形中位線定理及等腰三角形的判定與性質(zhì),證明三角形是等腰三角形是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.(1)-32÷$\frac{2}{3}$×(1-$\frac{1}{3}$)2
(2)$\frac{2}{3}$×(-$\sqrt{2\frac{1}{4}}$)-$\root{3}{-3\frac{3}{8}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.9的平方根是±3,$-1\frac{2}{3}$的倒數(shù)是-$\frac{3}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.現(xiàn)有幾種說法:
①有理數(shù)可分為正數(shù)和負(fù)數(shù)
②$\sqrt{16}$的平方根是±4
③近似數(shù)1.80所表示的準(zhǔn)確數(shù)a的范圍是1.795≤a<1.805
④算術(shù)平方根是他本身的數(shù)是0,1;
其中正確的說法有③④.(請?zhí)顚懶蛱枺?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.將方程x+y=2寫成用含x的代數(shù)式表示y,則y=2-x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.如圖,矩形OBCD的頂點(diǎn)C的坐標(biāo)為(2,3),則BD=$\sqrt{13}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.已知ax=9,ay=3,則ax-y=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平行四邊形ABCD中,點(diǎn)E、F分別在AD、BC邊上,且AE=CF,AF與BE交于G,CE與DF交于H.求證:四邊形EGFH是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.因式分解:
(1)a-2ax+ax2
(2)(a2+b2)-4a2b2

查看答案和解析>>

同步練習(xí)冊答案