如圖,若正方形ABCD旋轉(zhuǎn)后能與正方形CDEF重合,那么圖形所在的平面內(nèi)可作旋轉(zhuǎn)中心的點共有
3
3
個.
分析:分別以C、D、CD的中點為旋轉(zhuǎn)中心旋轉(zhuǎn),都能使正方形ABCD和DCFE重合.
解答:解:①以D為旋轉(zhuǎn)中心,把正方形ABCD順時針旋轉(zhuǎn)90°,可得到正方形DCFE;
②以C為旋轉(zhuǎn)中心,把正方形ABCD逆時針旋轉(zhuǎn)90°,可得到正方形DCFE;
③以CD的中點為旋轉(zhuǎn)中心,把正方形ABCD逆時針(或順時針)旋轉(zhuǎn)180°,可得到正方形DCFE;
故旋轉(zhuǎn)中心有3個,
故答案為:3.
點評:本題考查了對旋轉(zhuǎn)的性質(zhì)的運用,注意:旋轉(zhuǎn)前后的兩個圖形全等,旋轉(zhuǎn)中心是對應點連接的線段的中點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數(shù)量關(guān)系是
 
;
(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關(guān)系;(直接寫出結(jié)論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角△ABC內(nèi),以A為一個頂點作正方形ADEF,使得點E落在BC邊上.
(1)用尺規(guī)作圖,作出點E在BC上的位置(保留作圖痕跡,不寫作法和證明);
(2)若AB=6,AC=2,求正方形ADEF的邊長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)如圖,若在△ABC中有三個內(nèi)接正方形,其邊長分別為a=7,b=5,c=2.試證明∠ACB為直角.
(2)如圖,若在Rt△ABC中,∠ACB=90°,在其中內(nèi)接有三個邊長分別為a,b,c的小正方形,若b=7,c=3,試求出a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

猜想歸納:為了建設經(jīng)濟型節(jié)約型社會,“先鋒”材料廠把一批三角形廢料重新利用,因此工人師傅需要把它們截成不同大小的正方形鐵片.
(1)如圖①,若截取△ABC的內(nèi)接正方形DEFG,請你求出此正方形的邊長;
(2)如圖②,若在△ABC內(nèi)并排截取兩個相同的正方形(它們組成的矩形內(nèi)接于△ABC),請你求此正方形的邊長;
(3)如圖③,若在△ABC內(nèi)并排截取三個相同的正方形(它們組成的矩形內(nèi)接于△ABC),請你求此正方形的邊長;

(4)猜想:如圖④,假設在△ABC內(nèi)并排截取n個相同的正方形,使它們組成的矩形內(nèi)接于△ABC,則此正方形的邊長是多少?
(已知:AC=40,BC=30,∠C=90°)

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇期中題 題型:解答題

(1)如圖,若在△ABC中有三個內(nèi)接正方形,其邊長分別為a=7,b=5,c=2。試證明∠ACB為直角;
(2)如圖,若在Rt△ABC中,∠ACB=90°,在其中內(nèi)接有三個邊長分別為a,b,c的小正方形,若b=7,c=3,試求出a的值。

查看答案和解析>>

同步練習冊答案