(2006•綿陽(yáng))如圖,將△ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,得到△AB′C′,且C′為BC的中點(diǎn),則C′D:DB′=( )

A.1:2
B.1:2
C.1:
D.1:3
【答案】分析:旋轉(zhuǎn)60°后,AC=AC′,旋轉(zhuǎn)角∠C′AC=60°,可證△ACC′為等邊三角形;再根據(jù)BC′=CC′=AC,證明△BC′D為30°的直角三角形,尋找線段C′D與DB′之間的數(shù)量關(guān)系.
解答:解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知:AC=AC′,∠AC′B′=∠C=60°,
∵旋轉(zhuǎn)角是60°,即∠C′AC=60°,
∴△ACC′為等邊三角形,
∴BC′=CC′=AC,
∴∠B=∠C′AB=30°,
∴∠BDC′=∠C′AB+∠AC′B′=90°,
即B′C′⊥AB,
∴BC′=2C′D,
∴BC=B′C′=4C′D,
∴C′D:DB′=1:3.故選D.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)兩相等的性質(zhì),即對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等以及每一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:選擇題

(2006•綿陽(yáng))如圖,梯形AOBC的頂點(diǎn)A,C在反比例函數(shù)圖象上,OA∥BC,上底邊OA在直線y=x上,下底邊BC交x軸于E(2,0),則四邊形AOEC的面積為( )

A.3
B.
C.-1
D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃石市十四中中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2006•綿陽(yáng))如圖,梯形AOBC的頂點(diǎn)A,C在反比例函數(shù)圖象上,OA∥BC,上底邊OA在直線y=x上,下底邊BC交x軸于E(2,0),則四邊形AOEC的面積為( )

A.3
B.
C.-1
D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省綿陽(yáng)市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•綿陽(yáng))如圖,梯形AOBC的頂點(diǎn)A,C在反比例函數(shù)圖象上,OA∥BC,上底邊OA在直線y=x上,下底邊BC交x軸于E(2,0),則四邊形AOEC的面積為( )

A.3
B.
C.-1
D.+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省綿陽(yáng)市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•綿陽(yáng))如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)在圖中作出⊙O(不寫作法,保留作圖痕跡);
(2)求證:BC為⊙O的切線;
(3)若AC=3,tanB=,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年山西省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•綿陽(yáng))如圖,工人師傅砌門時(shí),常用木條EF固定矩形門框ABCD,使其不變形,這種做法的根據(jù)是( )

A.兩點(diǎn)之間線段最短
B.矩形的對(duì)稱性
C.矩形的四個(gè)角都是直角
D.三角形的穩(wěn)定性

查看答案和解析>>

同步練習(xí)冊(cè)答案