(1)證明:如圖,
∵PB切⊙O于點B,
∴∠PBD=∠A,
∵PF平分∠APB,
∴∠APE=∠BPD,
∴△PBD∽△PAE,
∴PB:PA=BD:AE,
∴PA•BD=PB•AE;
(2)證明:如圖,
∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.
又∵∠PBD=∠A,∠EPA=∠BPD,
∴∠BED=∠BDE.
∴BE=BD.
∵線段AE、BD的長是一元二次方程 x
2-kx+2
=0的兩根(k為常數(shù)),
∴AE+BD=k,
∴AE+BD=AE+BE=AB=k,
即⊙O直徑為常數(shù)k.
(3)∵PB切⊙O于B點,AB為直徑.
∴∠PBA=90°.
∵∠A=60°.
∴PB=PA•sin60°=
PA,
又∵PA•BD=PB•AE,
∴BD=
AE,
∵線段AE、BD的長是一元二次方程 x
2-kx+2
=0的兩根(k為常數(shù)).
∴AE•BD=2
,
即
AE
2=2
,
解得:AE=2,BD=
,
∴AB=k=AE+BD=2+
,BE=BD=
,
在Rt△PBA中,PB=AB•tan60°=(2+
)×
=3+2
.
在Rt△PBE中,tan∠BPF=
=
=2-
,
∵∠FPA=∠BPF,
∴tan∠FPA=2-
.
分析:(1)由PB切⊙O于點B,根據(jù)弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可證得△PBD∽△PAE,然后由相似三角形的對應(yīng)邊成比例,證得PA•BD=PB•AE;
(2)易證得BE=BD,又由線段AE、BD的長是一元二次方程 x
2-kx+2
=0的兩根(k為常數(shù)),即可得AE+BD=k,繼而求得AB=k,即:⊙O的直徑長為常數(shù)k;
(3)由∠A=60°,并且線段AE、BC的長是一元二次方程 x
2-kx+2
=0的兩根(k為常數(shù)),可求得AE與BD的長,繼而求得tan∠FPB的值,則可得tan∠FPA的值.
點評:此題考查了切線的性質(zhì)、等腰三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及根與系數(shù)的關(guān)系等知識.此題難度較大,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.