如圖,在直角坐標平面內(nèi),△ABO中,∠ABO=90°,∠A=30°,OB=1,如果△ABO繞原點O按順時針方向旋轉(zhuǎn)到OA′B′的位置,那么點B′的坐標是   
【答案】分析:由旋轉(zhuǎn)的性質(zhì)可知∠B′OA′=∠BOA=90°-∠A=60°,OB′=OB=1,過B′作B′C⊥x軸,垂足為C,解Rt△OB′C求OC、B′C,確定點B′的坐標.
解答:解:過B′作B′C⊥x軸,垂足為C,
由旋轉(zhuǎn)的性質(zhì),得∠B′OA′=∠BOA=90°-∠A=60°,OB′=OB=1,
在Rt△OB′C中,OC=OB′×cos60°=1×=,
B′C=OB′×sin60°=1×=,
∴點B′().
點評:本題考查了坐標系里的旋轉(zhuǎn)變換.關鍵是明確旋轉(zhuǎn)前后,對應點到旋轉(zhuǎn)中心的距離相等,對應角相等,通過解直角三角形解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面xOy中,拋物線C1的頂點為A(-1,-4),且過點B(-3,0)
(1)寫出拋物線C1與x軸的另一個交點M的坐標;
(2)將拋物線C1向右平移2個單位得拋物線C2,求拋物線C2的解析式;
(3)寫出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面中,Rt△ABC的斜邊AB在x軸上,直角頂點C在y軸的負半軸上,cos∠ABC=
45
,點P在線段OC上,且PO、OC的長是方程x2-15x+36=0的兩根.
(1)求P點坐標;
(2)求AP的長;
(3)在x軸上是否存在點Q,使以A、Q、C、P為頂點的四邊形是梯形?若存在,請求出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標平面內(nèi),函數(shù)y=
m
x
(x>0,m是常熟)的圖象經(jīng)過A(1,4),B(a,b),其中a>1,過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD,DC,CB
(Ⅰ)求函數(shù)y=
m
x
的解析式;
(Ⅱ)若△ABD的面積為4,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

完成下列各題:
(1)解方程組
2x+y=2;         ①
3x-2y=10.      ②

(2)如圖,在直角坐標平面內(nèi),O為原點,點A的坐標為(10,0),點B在第一象限內(nèi),BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標平面內(nèi)的△ABC中,點A的坐標為(0,2),點C的坐標為(5,5),要使以A、B、C、D為頂點的四邊形是平行四邊形,且點D坐標在第一象限,那么點D的坐標是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習冊答案