【題目】在平面直角坐標(biāo)系中,點(diǎn)Ax軸正半軸上,點(diǎn)By軸正半軸上,O為坐標(biāo)原點(diǎn),OAOB1,過(guò)點(diǎn)OOM1AB于點(diǎn)M1;過(guò)點(diǎn)M1M1A1OA于點(diǎn)A1:過(guò)點(diǎn)A1A1M2AB于點(diǎn)M2;過(guò)點(diǎn)M2M2A2OA于點(diǎn)A2以此類(lèi)推,點(diǎn)M2019的坐標(biāo)為_____

【答案】1,

【解析】

根據(jù)等腰直角三角形的性質(zhì)得到點(diǎn)M1AB的中點(diǎn),A1OA的中點(diǎn),根據(jù)中位線的性質(zhì)定理,求出點(diǎn)M1的坐標(biāo),總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.

∵在RtOAB中,OAOB,OM1AB,

∴點(diǎn)M1AB的中點(diǎn),OM1=A M1,

M1A1OA,

A1OA的中點(diǎn),A 1M1= A 1 A,

A 1M1RtOAB的中位線,

∴點(diǎn)M1的坐標(biāo)為( ,),

同理,點(diǎn)M2的坐標(biāo)為(1 ,),點(diǎn)M3的坐標(biāo)為(1,),

……,

點(diǎn)M2019的坐標(biāo)為(1,),

故答案為:(1,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,邊上的中點(diǎn),邊上任意一點(diǎn),且.若點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)恰好落在的中位線上,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1、圖2分別是8×8的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的端點(diǎn)在小正方形的頂點(diǎn)上,請(qǐng)?jiān)趫D1、圖2中各畫(huà)一個(gè)圖形,分別滿足以下要求:

1)在圖1中畫(huà)一個(gè)以線段AB為一邊的正方形,并求出此正方形的面積;(所畫(huà)正方形各頂點(diǎn)必須在小正方形的頂點(diǎn)上)

2)在圖2中畫(huà)一個(gè)以線段AB為一邊的等腰三角形,所畫(huà)等腰三角形各頂點(diǎn)必須在小正方形的頂點(diǎn)上,且所畫(huà)等腰三角形的面積為12

1 2 備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)中,拋物線過(guò)點(diǎn),點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),軸,交直線于點(diǎn),連接,交直線于點(diǎn)

在如下坐標(biāo)系作出該拋物線簡(jiǎn)圖,并求拋物線的函數(shù)表達(dá)式;

當(dāng)時(shí),求點(diǎn)的坐標(biāo);

求線段的最大值:

當(dāng)線段最大時(shí),若點(diǎn)在直線上且,直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在初中階段的函數(shù)學(xué)習(xí)中我們經(jīng)歷了確定函數(shù)的表達(dá),利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問(wèn)題的學(xué)習(xí)過(guò)程,在畫(huà)函數(shù)圖象時(shí),我們通過(guò)描點(diǎn)或平移的方法畫(huà)出了所學(xué)的函數(shù)圖象.已知函數(shù)y2b的定義域?yàn)?/span>x≥3,且當(dāng)x0時(shí)y22由此,請(qǐng)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y2b的圖象與性質(zhì)進(jìn)行如下探究:

1)函數(shù)的解析式為:   

2)在給定的平面直角坐標(biāo)系xOy中,畫(huà)出該函數(shù)的圖象并寫(xiě)出該函數(shù)的一條性質(zhì):   ;

3)結(jié)合你所畫(huà)的函數(shù)圖象與yx+1的圖象,直接寫(xiě)出不等式2b≤x+1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn)

求這條拋物線的解析式;

如圖1,點(diǎn)P是第三象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形的面積最大時(shí),求點(diǎn)的坐標(biāo);

如圖2,線段的垂直平分線交軸于點(diǎn),垂足為為拋物線的頂點(diǎn),在直線上是否存在一點(diǎn),使的周長(zhǎng)最小?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn):

(1)如圖1,在RtABC中,∠A90°,ABkAC(k1),DAB上一點(diǎn),DEBC,則BD,EC的數(shù)量關(guān)系為   

類(lèi)比探究

(2)如圖2,將△AED繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a90°),連接CEBD,請(qǐng)問(wèn)(1)BD,EC的數(shù)量關(guān)系還成立嗎?說(shuō)明理由

拓展延伸:

(3)如圖3,在(2)的條件下,將△AED繞點(diǎn)A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a90°).直線BD,CE交于F點(diǎn),若AC1,AB,則當(dāng)∠ACE15°時(shí),BFCF的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某一時(shí)刻,小寧站在斜坡AC上的A處,小李在大樓FD的樓頂F處,此時(shí)小寧望小李的仰角為1843°.5秒后,小寧沿斜坡AC前進(jìn)到達(dá)C處,小李從大樓F處下樓到大樓E處,此時(shí)小李望小寧的俯角為226°;然后小李繼續(xù)下樓,小寧沿CD前往樓底D處,已知小寧的速度為52米/秒,大樓FD的高度為30米,斜坡AC的坡度為124,小李、小寧都保持勻速前進(jìn),若斜坡、大樓在同一平面內(nèi),小李、小寧的身高忽略不計(jì),則當(dāng)小李達(dá)到樓底D處時(shí),小寧距離D處的距離為( 。┟祝

(已知:tan1843°≈,sin1843°≈cos226°≈,tan226

A.10B.156C.204D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】文具店有三種品牌的6個(gè)筆記本,價(jià)格是4,5,7(單位:元)三種,從中隨機(jī)拿出一個(gè)本,已知(一次拿到7元本)

1)求這6個(gè)本價(jià)格的眾數(shù).

2)若琪琪已拿走一個(gè)7元本,嘉嘉準(zhǔn)備從剩余5個(gè)本中隨機(jī)拿一個(gè)本.

①所剩的5個(gè)本價(jià)格的中位數(shù)與原來(lái)6個(gè)本價(jià)格的中位數(shù)是否相同?并簡(jiǎn)要說(shuō)明理由;

②嘉嘉先隨機(jī)拿出一個(gè)本后不放回,之后又隨機(jī)從剩余的本中拿一個(gè)本,用列表法求嘉嘉兩次都拿到7元本的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案