分析 設BE=x,表示出CE=8-x,根據(jù)翻折的性質可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根據(jù)翻折的性質可得∠AEF=∠CEF,根據(jù)兩直線平行,內錯角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根據(jù)等角對等邊可得AE=AF,過點E作EH⊥AD于H,可得四邊形ABEH是矩形,根據(jù)矩形的性質求出EH、AH,然后求出FH,再利用勾股定理列式計算即可得解.
解答 解:設BE=x,則CE=BC-BE=8-x,
∵沿EF翻折后點C與點A重合,
∴AE=CE=8-x,
在Rt△ABE中,AB2+BE2=AE2,
即42+x2=(8-x)2
解得x=3,
∴AE=8-3=5,
由翻折的性質得,∠AEF=∠CEF,
∵矩形ABCD的對邊AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=5,
∴①正確;
在Rt△ABE和Rt△AGF中,
$\left\{\begin{array}{l}{AE=AF}\\{AG=AB}\end{array}\right.$,
∴△ABE≌△AGF(HL),
∴B正確;
過點E作EH⊥AD于H,則四邊形ABEH是矩形,
∴EH=AB=4,
AH=BE=3,
∴FH=AF-AH=5-3=2,
在Rt△EFH中,EF=2$\sqrt{5}$,
∴②正確;
∵△AEF不是等邊三角形,
∴EF≠AF,
故③錯誤;
△AEF中,AF=5,則S△AEF=$\frac{1}{2}$×5×4=10.
故④正確.
故答案是:①②④.
點評 本題考查了翻折變換的性質,矩形的判定與性質,勾股定理,熟記各性質并作利用勾股定理列方程求出BE的長度是解題的關鍵,也是本題的突破口.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com