【題目】將一矩形紙片OABC放在平面直角坐標系中,O為原點,點Ax軸上,點Cy軸上,OA=10,OC=8,如圖在OC邊上取一點D,將△BCD沿BD折疊,使點C恰好落在OA邊上,記作E點;

1)求點E的坐標及折痕DB的長;

2)在x軸上取兩點M、N(點M在點N的左側),且MN=4.5,求使四邊形BDMN的周長最短的點M、點N的坐標。

【答案】(1)E(4,0);DB=5;(2)M(1.5,0);N(6,0);

【解析】

(1)、根據矩形的性質得到BC=OA=10,AB=OC=8,再根據折疊的性質得到BC=BE=10,DC=DE,易得AE=6,則OE=10-6=4,即可得到E點坐標;在Rt△ODE中,設DE=x,則OD=OC-DC=OC-DE=8-x,利用勾股定理可計算出x,再在Rt△BDE中,利用勾股定理計算出BD;(2)、D、M、N為頂點作平行四邊形DMND′,作出點B關于x軸對稱點B′,則易得到B′的坐標,D′的坐標,然后利用待定系數(shù)法求出直線D′B′的解析式,令y=0,得-2x+12=0,確定N點坐標,也即可得到M點坐標.

(1)、∵四邊形OABC為矩形, ∴BC=OA=10,AB=OC=8,

∵△BCD沿BD折疊,使點C恰好落在OAE點上, ∴BC=BE=10,DC=DE,

Rt△ABE中,BE=10,AB=8, ∴AE=6, ∴OE=10-6=4, ∴E點坐標為(4,0);

Rt△ODE中,設DE=x,則OD=OC-DC=OC-DE=8-x, ∴x2=42+(8-x)2,解得x=5,

Rt△BDE中, BD=;

(2)、D、M、N為頂點作平行四邊形DMND′,作出點B關于x軸對稱點B′,如圖,

∴B′的坐標為(10,-8),DD′=MN=4.5,∴D′的坐標為(4.5,3),

設直線D′B′的解析式為y=kx+b,

B′(10,-8),D′(4.5,3)代入得,10k+b=-8,4.5k+b=3,解得k=-2,b=12,

∴直線D′B′的解析式為y=-2x+12, y=0,得-2x+12=0,解得x=6,

∴M(1.5,0);N(6,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)AB的中點,DEAB交于點G,EFAC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:

①EFAC四邊形ADFE為菱形;③AD=4AG;④FH=BD

其中正確結論的為______(請將所有正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點EAB上,點DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于點F,試判斷△AFC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一點,過點P作EF∥AC,與菱形的兩條邊分別交于點E、F.設BP=x,EF=y,則下列圖象能大致反映y與x的函數(shù)關系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC分別交AB,AC于M、N,則△AMN的周長為( )

A.12
B.4
C.8
D.不確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB 為⊙O 的切線,切點為 B,連接 AO 與⊙O 交與點 C,BD 為⊙O 的直徑,連接 CD,若∠A=30°,OA=2,則圖中陰影部分的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明所在的學校加強學生的體育鍛煉,準備從某體育用品商店一次購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買2個籃球和3個足球共需310元,購買5個籃球和2個足球共需500元.

(1)每個籃球和足球各需多少元?

(2)根據實際情況,需從該商店一次性購買籃球和足球功60個,要求購買籃球和足球的總費用不超過4000元,那么最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1的圖形我們把它稱為“8字形”,則∠A,∠B,∠C,∠D四個角的數(shù)量關系是   ;

(2)如圖2,若∠BCD,∠ADE的角平分線CP,DP交于點P,則∠P與∠A,∠B的數(shù)量關系為∠P   

(3)如圖3,CM,DN分別平分∠BCD,∠ADE,當∠A+∠B=80°時,試求∠M+∠N的度數(shù)(提醒:解決此問題可以直接利用上述結論);

(4)如圖4,如果∠MCDBCD,∠NDEADE,當∠A+∠Bn°時,試求∠M+∠N的度數(shù).

查看答案和解析>>

同步練習冊答案