已知:如圖4346,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD∶AB=__________時(shí),四邊形MENF是正方形(只寫結(jié)論,不需證明).
(1)證明:在矩形ABCD中,
AB=CD,∠A=∠D=90°,
又∵M是AD的中點(diǎn),∴AM=DM.
∴△ABM≌△DCM(SAS).
(2)解:四邊形MENF是菱形.證明如下:
E,F,N分別是BM,CM,CB的中點(diǎn),
∴NE∥MF,NE=MF.
∴四邊形MENF是平行四邊形.
由(1),得BM=CM,∴ME=MF.
∴四邊形MENF是菱形.
(3)2∶1 解析:當(dāng)AD∶AB=2∶1時(shí),四邊形MENF是正方形.理由:
∵M為AD中點(diǎn),∴AD=2AM.
∵AD∶AB=2∶1,∴AM=AB.
∵∠A=90,∴∠ABM=∠AMB=45°.
同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.
∵四邊形MENF是菱形,∴菱形MENF是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x的一元二次方程x2+2x-a=0有兩個(gè)相等的實(shí)數(shù)根,則a的值是( )
A.1 B.-1 C. D.-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
矩形具有而菱形不具有的性質(zhì)是( )
A.兩組對(duì)邊分別平行 B.對(duì)角線相等 C.對(duì)角線互相平分 D.兩組對(duì)角分別相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4341,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.將△ABC沿射線BC方向平移10 cm,得到△DEF,A,B,C的對(duì)應(yīng)點(diǎn)分別是D,E,F,連接AD.求證:四邊形ACFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4358,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計(jì)劃拼出以下四個(gè)圖形:①鄰邊不等的矩形;②等腰梯形;③有一個(gè)角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4365,在等邊三角形ABC中,BC=6 cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1 cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2 cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(單位:s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證: △ADE≌△CDF.
(2)填空:
①當(dāng)t為________s時(shí),四邊形ACFE是菱形;
②當(dāng)t為________s時(shí),以A,F,C,E為頂點(diǎn)的四邊形是直角梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列說法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中說法正確的序號(hào)是________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com