【題目】已知:如圖,在四邊形ABCD中,ADBC,∠A=90°,AB=AD=8cm,CD=10cm,點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,點Q從點D出發(fā),沿DC方向勻速運動,速度為lcm/s.連接PQ,設運動時間為ts)(0t8).解答下列問題:

1)當t為何值時,PQAD?

2)設四邊形APQD的面積為ycm2),求yt的函數(shù)關系式;

3)是否存在某一時刻t,使S四邊形APQOS四邊形BCQP=1727?若存在,求出t的值,并求此時PQ的長;若不存在,請說明理由.

【答案】1)當ts時,PQAD;(2yt的函數(shù)關系式是y=;(3t的值為2ss,此時PQ的長為cm,見解析.

【解析】

1)根據(jù)平行線分線段成比例的性質(zhì)解答即可;

2)過點DDEBC于點E,過點QQFADAD的延長線于F,根據(jù)矩形的性質(zhì)和三角函數(shù)解答即可;

3)過點QQHAB于點H,根據(jù)四邊形面積公式進行解答即可.

解:(1)∵PQADADBC

,

解得,

答:當ts時,PQAD

2)過點DDEBC于點E,過點QQFADAD的延長線于F

∴∠DEC=QFD=90°

ADBC,∠A=90°

∴∠ABC=180°-∠A=90°

∴四邊形ABND是矩形

AB=DE,BE=AD

RtDEC中,,

∵∠C=QDF

∴在RtDFQRtDEC中,

sinQDF=,即

cosQDF=,即

∵在四邊形ABCD中,∠A=90°,AB=AD

∴∠ABD=ADB=45°

y=S四邊形APQD=S四邊形APQF-SDQF

=

=

=

答:yt的函數(shù)關系式是y=

3)若S四邊形APQDS四邊形BCQP=1727,則y=S四邊形ABCD

S四邊形ABCD=

=34

解得t1=2,

t的值為2ss

過點QQHAB于點H

PH=

QH=AF=

PQ=

t=2時,PQ=

t=時,PQ=

∴此時PQ的長為cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC5,以AB為一邊向三角形外作正方形ABEF,正方形的中心為O, ,則BC邊的長為_

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把邊長為cm的等邊剪成四部分,從三角形三個頂點往下bcm處,呈30°角下剪刀,使中間部分形成一個小的等邊.若的面積是,則的值為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時,甲同學發(fā)現(xiàn)忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.

(1)求a、b的值.

(2)求甲追上乙時,距學校的路程.

(3)當兩人相距500米時,直接寫出t的值是_______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A-2,3)關于y軸的對稱點為點B,連接AB,反比例函數(shù)y=x0)的圖象經(jīng)過點B,過點BBCx軸于點C,點P是該反比例函數(shù)圖象上任意一點.

1)求k的值;

2)若△ABP的面積等于2,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與軸交于,兩點,動點從點出發(fā),以每秒2個單位長度的速度沿方向運動,以為邊作矩形(點軸上),設運動的時間為.

1)求拋物線的表達式;

2)過點軸于點,交拋物線于點,當時,求點的坐標;

3)如圖,動點同時從點出發(fā),以每秒3個單位長度的速度沿方向運動,以為邊作等腰直角三角形交于點.給出如下定義:在四邊形中,,,我們把這種兩組鄰邊分別相等的四邊形叫做箏形”.當矩形和等腰三角形重疊的四邊形是箏形時,求箏形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的邊,點,分別在軸,軸上,反比例函數(shù)的圖象經(jīng)過點,且與邊交于點.

(1)求反比例函數(shù)的解析式;

(2)求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線l是由函數(shù)y在第一象限內(nèi)的圖象繞坐標原點O逆時針旋轉(zhuǎn)90°得到的,且過點A m6),B (﹣6,n),則OAB的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在練習操控航拍無人機,該型號無人機在上升和下落時的速度相同,設無人機的飛行高度為y(米),小明操控無人飛機的時間為x(分),yx之間的函數(shù)圖象如圖所示.

(1)無人機上升的速度為   /分,無人機在40米的高度上飛行了   分.

(2)求無人機下落過程中,yx之間的函數(shù)關系式.

(3)求無人機距地面的高度為50米時x的值.

查看答案和解析>>

同步練習冊答案