已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,BE=DF.
(1)求證:AE=AF;
(2)若AE垂直平分BC,AF垂直平分CD,求證:△AEF為等邊三角形.

【答案】分析:(1)由已知條件證明△ABE≌△ADF,根據(jù)全等三角形的性質(zhì)可得到AE=AF;
(2)連接AC,根據(jù)有一個角為60°的等腰三角形是等邊三角形即可得證.
解答:證明:(1)∵四邊形ABCD是菱形,
∴AB=AD,∠B=∠D,
又∵BE=DF,
∴△ABE≌△ADF,
∴AE=AF;
(2)連接AC,
∵AE垂直平分BC,AF垂直平分CD,
∴AB=AC=AD.
∵AB=BC=CD=DA,
∴△ABC和△ACD都是等邊三角形.
∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.
∴∠EAF=∠CAE+∠CAF=60°
又∵AE=AF,
∴△AEF是等邊三角形.
點評:本題考查了菱形的性質(zhì)、全等三角形的判定和性質(zhì)、垂直平分線的性質(zhì)以及等腰三角形的判定和性質(zhì)等邊三角形的判定和性質(zhì),題目的綜合性很強,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知:如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、已知:如圖,菱形ABCD的AB邊在射線AM上,AC為它的對角線,請用尺規(guī)把這個菱形補充完整.(保留作圖痕跡,不寫畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,菱形ABCD中,E、F分別是AB、AD上的點,且AE=AF.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,菱形ABCD中,E、F分別是CD、CB上的點,且CE=CF;
(1)求證:△ABE≌△ADF.
(2)若菱形ABCD中,AB=4,∠C=120°,∠EAF=60°,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)二模)已知:如圖,菱形ABCD中,過AD的中點E作AC的垂線EF,交AB于點M,交CB的延長線于點F.如果FB的長是2,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案