如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以1個(gè)單位長度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB=______,PD=______.
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長.

【答案】分析:(1)根據(jù)題意得:CQ=2t,PA=t,由Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,即可得tanA==,則可求得QB與PD的值;
(2)易得△APD∽△ACB,即可求得AD與BD的長,由BQ∥DP,可得當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,即可求得此時(shí)DP與BD的長,由DP≠BD,可判定?PDBQ不能為菱形;然后設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長度,由要使四邊形PDBQ為菱形,則PD=BD=BQ,列方程即可求得答案;
(3)設(shè)E是AC的中點(diǎn),連接ME.當(dāng)t=4時(shí),點(diǎn)Q與點(diǎn)B重合,運(yùn)動(dòng)停止.設(shè)此時(shí)PQ的中點(diǎn)為F,連接EF,由△PMN∽△PQC.利用相似三角形的對應(yīng)邊成比例,即可求得答案.
解答:解:(1)根據(jù)題意得:CQ=2t,PA=t,
∴QB=8-2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA==,
∴PD=t.
故答案為:(1)8-2t,t.

(2)不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
,即,
∴AD=t,
∴BD=AB-AD=10-t,
∵BQ∥DP,
∴當(dāng)BQ=DP時(shí),四邊形PDBQ是平行四邊形,
即8-2t=,解得:t=
當(dāng)t=時(shí),PD==,BD=10-×=6,
∴DP≠BD,
∴?PDBQ不能為菱形.
設(shè)點(diǎn)Q的速度為每秒v個(gè)單位長度,
則BQ=8-vt,PD=t,BD=10-t,
要使四邊形PDBQ為菱形,則PD=BD=BQ,
當(dāng)PD=BD時(shí),即t=10-t,解得:t=
當(dāng)PD=BQ,t=時(shí),即=8-,解得:v=
當(dāng)點(diǎn)Q的速度為每秒個(gè)單位長度時(shí),經(jīng)過秒,四邊形PDBQ是菱形.

(3)如圖2,以C為原點(diǎn),以AC所在的直線為x軸,建立平面直角坐標(biāo)系.
依題意,可知0≤t≤4,當(dāng)t=0時(shí),點(diǎn)M1的坐標(biāo)為(3,0),當(dāng)t=4時(shí)點(diǎn)M2的坐標(biāo)為(1,4).
設(shè)直線M1M2的解析式為y=kx+b,

解得,
∴直線M1M2的解析式為y=-2x+6.
∵點(diǎn)Q(0,2t),P(6-t,0)
∴在運(yùn)動(dòng)過程中,線段PQ中點(diǎn)M3的坐標(biāo)(,t).
把x=代入y=-2x+6得y=-2×+6=t,
∴點(diǎn)M3在直線M1M2上.
過點(diǎn)M2作M2N⊥x軸于點(diǎn)N,則M2N=4,M1N=2.
∴M1M2=2
∴線段PQ中點(diǎn)M所經(jīng)過的路徑長為2單位長度.
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、菱形的判定與性質(zhì)以及一次函數(shù)的應(yīng)用.此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
精英家教網(wǎng)
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
探究1:在運(yùn)動(dòng)過程中,四邊形BDG′G能否是菱形?若能,請求出此時(shí)x的值;若不能,請說明理由;
探究2:設(shè)在運(yùn)動(dòng)過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動(dòng),DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
精英家教網(wǎng)
(1)當(dāng)AD=CD時(shí),求證:DE∥AC;
(2)探究:AD為何值時(shí),△BME與△CNE相似?
(3)探究:AD為何值時(shí),四邊形MEND與△BDE的面積相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點(diǎn).
(1)求線段AB的長;
(2)若一個(gè)扇形的周長等于(1)中線段AB的長,當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長,并驗(yàn)證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
說明:如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,可以從圖2、3中選取一個(gè),并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
(1)求AA1的長;
(2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長為
 
;
(3)在Rt△A2B2C中按上述操作,則AA3的長為
 
;
(4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長為
 

查看答案和解析>>

同步練習(xí)冊答案