精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,D是AB中點,聯結CD.
(1)若AB=10且∠ACD=∠B,求AC的長.
(2)過D點作BC的平行線交AC于點E,設 = = ,請用向量 、 表示 (直接寫出結果)

【答案】
(1)解:∵D是AB中點,

∴AD= AB=5,

∵∠ACD=∠B,∠A=∠A,

∴△ACD∽△ABC,

,

∴AC2=ABAD=10×5=50,

∴AC= =5 ;


(2)解:如圖所示:

∵DE∥BC,D是AB的中點,

∴AD=DB,AE=EC,

= = ,

= =

,

= = ,


【解析】(1)求出AD= AB=5,證明△ACD∽△ABC,得出 ,即可得出結果;(2)由平行線的性質得出AE=EC,由向量的定義容易得出結果.
【考點精析】認真審題,首先需要了解相似三角形的判定與性質(相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內切圓,現將矩形ABCD按如圖所示的方式折疊,使點D與點O重合,折痕為FG.點F,G分別在邊AD,BC上,連結OG,DG.若OG⊥DG,且⊙O的半徑長為1,則下列結論不成立的是(
A.CD+DF=4
B.CD﹣DF=2 ﹣3
C.BC+AB=2 +4
D.BC﹣AB=2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算下列各題
(1)計算: ﹣4sin45°﹣ +
(2)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為(
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請畫示意圖說明剪法. 我們有多少種剪法,圖1是其中的一種方法:

定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.
(1)請你在圖2中用兩種不同的方法畫出頂角為45°的等腰三角形的三分線,并標注每個等腰三角形頂角的度數;(若兩種方法分得的三角形成3對全等三角形,則視為同一種)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分線,點D在BC邊上,點E在AC邊上,且AD=BD,DE=CE,設∠C=x°,試畫出示意圖,并求出x所有可能的值;
(3)如圖3,△ABC中,AC=2,BC=3,∠C=2∠B,請畫出△ABC的三分線,并求出三分線的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC,AB=AC=5,BC=8,∠PDQ的頂點D在BC邊上,DP交AB邊于點E,DQ交AB邊于點O且交CA的延長線于點F(點F與點A不重合),設∠PDQ=∠B,BD=3.
(1)求證:△BDE∽△CFD;
(2)設BE=x,OA=y,求y關于x的函數關系式,并寫出定義域;
(3)當△AOF是等腰三角形時,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:2sin60°﹣|cot30°﹣cot45°|+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是邊AB的中點,現有一點P位于邊AC上,使得△ADP與△ABC相似,則線段AP的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某小學三年級到六年級的全體學生參加“禮儀”知識測試,試題共有10題,每題10分.從中隨機抽取了部分學生的成績進行統(tǒng)計,發(fā)現抽測的學生每人至少答對了6題,現將有關數據整理后繪制成如下“年級人數統(tǒng)計圖”和尚未全部完成的“成績情況統(tǒng)計表”.

成績情況統(tǒng)計表

成績

100分

90分

80分

70分

60分

人數

21

40

5

頻率

0.3

根據圖表中提供的信息,回答下列問題:
(1)請將統(tǒng)計表補充完整
成績情況統(tǒng)計表

成績

100分

90分

80分

70分

60分

人數

21

40

5

頻率

0.3


(2)測試學生中,成績?yōu)?0分的學生人數有 名;眾數是 分;中位數是 分;
(3)若該小學三年級到六年級共有1800名學生,則可估計出成績?yōu)?0分的學生人數約有 名.

查看答案和解析>>

同步練習冊答案