如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).

【答案】分析:(1)因為這兩個三角形是直角三角形,BC=BD,因為AD∥BC,還能推出∠ADB=∠EBC,從而能證明:△ABD≌△ECB.
(2)因為∠DBC=50°,BC=BD,可求出∠BDC的度數(shù),進而求出∠DCE的度數(shù).
解答:(1)證明:∵AD∥BC,
∴∠ADB=∠EBC.
∵CE⊥BD,∠A=90°,
∴∠A=∠CEB,
在△ABD和△ECB中,
∵∠A=∠CEB,AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠BCE,
又∵BC=BD
∴△ABD≌△ECB;

(2)解:∵∠DBC=50°,BC=BD,
∴∠EDC=(180°-50°)=65°,
又∵CE⊥BD,
∴∠CED=90°,
∴∠DCE=90°-∠EDC=90°-65°=25°.
點評:本題考查了全等三角形的判定和性質(zhì),以及直角梯形的性質(zhì),直角梯形有兩個角是直角,有一組對邊平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點,AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊答案