如圖所示,AC與⊙O相切于點(diǎn)C,線段AO交⊙O于點(diǎn)B.過點(diǎn)B作BD∥AC交⊙O于點(diǎn)D,連接CD、OC,且OC交DB于點(diǎn)E.若∠CDB=30°,DB=5cm.
(1)求⊙O的半徑長(zhǎng);
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)

【答案】分析:(1)根據(jù)切線的性質(zhì)定理和平行線的性質(zhì)定理得到OC⊥BD,根據(jù)垂徑定理得到BE的長(zhǎng),再根據(jù)圓周角定理發(fā)現(xiàn)∠BOE=60°,從而根據(jù)銳角三角函數(shù)求得圓的半徑;
(2)結(jié)合(1)中的有關(guān)結(jié)論證明△DCE≌△BOE,則它們的面積相等,故陰影部分的面積就是扇形OBC的面積.
解答:解:(1)∵AC與⊙O相切于點(diǎn)C,
∴∠ACO=90°
∵BD∥AC∴∠BEO=∠ACO=90°,
∴DE=EB=BD=(cm)
∵∠D=30°,
∴∠O=2∠D=60°,
在Rt△BEO中,sin60°=
∴OB=5,即⊙O的半徑長(zhǎng)為5cm.

(2)由(1)可知,∠O=60°,∠BEO=90°,
∴∠EBO=∠D=30°
又∵∠CED=∠BEO,BE=ED,
∴△CDE≌△OBE
,
答:陰影部分的面積為
點(diǎn)評(píng):本題主要考查切線的性質(zhì)定理、平行線的性質(zhì)定理、垂徑定理以及全等三角形的判定方法.能夠熟練解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,AC與⊙O相切于點(diǎn)C,線段AO交⊙O于點(diǎn)B.過點(diǎn)B作BD∥AC交⊙O于點(diǎn)D,連接CD、精英家教網(wǎng)OC,且OC交DB于點(diǎn)E.若∠CDB=30°,DB=5
3
cm.
(1)求⊙O的半徑長(zhǎng);
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第35章《圓(二)》中考題集(19):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖所示,AC與⊙O相切于點(diǎn)C,線段AO交⊙O于點(diǎn)B.過點(diǎn)B作BD∥AC交⊙O于點(diǎn)D,連接CD、OC,且OC交DB于點(diǎn)E.若∠CDB=30°,DB=5cm.
(1)求⊙O的半徑長(zhǎng);
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(81):3.4 弧長(zhǎng)和扇形的面積,圓錐的側(cè)面展開圖(解析版) 題型:解答題

如圖所示,AC與⊙O相切于點(diǎn)C,線段AO交⊙O于點(diǎn)B.過點(diǎn)B作BD∥AC交⊙O于點(diǎn)D,連接CD、OC,且OC交DB于點(diǎn)E.若∠CDB=30°,DB=5cm.
(1)求⊙O的半徑長(zhǎng);
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(16)(解析版) 題型:解答題

(2009•撫順)如圖所示,AC與⊙O相切于點(diǎn)C,線段AO交⊙O于點(diǎn)B.過點(diǎn)B作BD∥AC交⊙O于點(diǎn)D,連接CD、OC,且OC交DB于點(diǎn)E.若∠CDB=30°,DB=5cm.
(1)求⊙O的半徑長(zhǎng);
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案