【題目】在△ABC中,ABAC,∠BAC50° ,DBC的中點(diǎn),以AC為腰向外作等腰直角ACE,∠EAC90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G

(1)求AEB的度數(shù);

(2)求證:AEBACF

(3)AB4,求的值

【答案】(1)20°;(2)32.

【解析】

(1)根據(jù)等腰直角三角形的旋轉(zhuǎn)得出∠ABE=AEB,求出∠BAE,根據(jù)三角形內(nèi)角和定理求出即可;
(2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=CAF,根據(jù)SAS推出BAF≌△CAF,根據(jù)全等得出∠ABF=ACF,即可得出答案;
(3)根據(jù)全等得出BF=CF,求出∠CFG=EAG=90°,根據(jù)勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2,即可得出答案.

(1)AB=AC,AC=AE.

AB=AE,

∴∠AEB=ABE.

∵∠BAC=50°,CAE=90°,

∴∠BAE=50°+90°=140°.

∴∠AEB=

(2)AB=AC,DBC的中點(diǎn),

∴∠BAF=CAF.

∴△ABF≌△ACF.

∴∠ABF=ACF.

∵∠AEB=ABE,

∴∠AEB=ACF.

(3)∵∠AEB=ACF ,AGE=CGF,

∴∠CFE=CAE=90°.

CF=BF,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中學(xué)生帶手機(jī)上學(xué)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,為此,某記者隨機(jī)調(diào)查了某城區(qū)若干名學(xué)生家長(zhǎng)對(duì)這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無(wú)所謂;B:基本贊成;C:贊成;D:反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線圖1和統(tǒng)計(jì)圖2(不完整)。請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)此次抽樣檢查中,共調(diào)查了  名學(xué)生家長(zhǎng);

2)將圖1補(bǔ)充完整;

3)根據(jù)抽樣檢查的結(jié)果,請(qǐng)你估計(jì)該市城區(qū)6000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持反對(duì)態(tài)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,ABC是等邊三角形,P是三角形內(nèi)一點(diǎn),PDAB,PEBC,PFAC,若ABC的周長(zhǎng)為18,則PD+PE+PF=( 。

A. 18B. 9

C. 6D. 條件不夠,不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),且OC=OB,tan∠ACO=

(1)求拋物線的解析式;
(2)若點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,直線AD下方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PH⊥AD于點(diǎn)H,作PM平行于y軸交直線AD于點(diǎn)M,交x軸于點(diǎn)E,求△PHM的周長(zhǎng)的最大值;
(3)在(2)的條件下,以點(diǎn)E為端點(diǎn),在直線EP的右側(cè)作一條射線與拋物線交于點(diǎn)N,使得∠NEP為銳角,在線段EB上是否存在點(diǎn)G,使得以E,N,G為頂點(diǎn)的三角形與△AOC相似?如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是∠ABC的平分線,EDBC,∠4=∠5,則EF也是∠AED的平分線.完成下列推理過(guò)程:

證明:∵BD是∠ABC的平分線(已知)

∴∠1=∠2(角平分線定義)

EDBC(已知)

∴∠5=∠2   

∴∠1=∠5(等量代換)

∵∠4=∠5(已知)

EF      

∴∠3=∠1   

∴∠3=∠4(等量代換)

EF是∠AED的平分線(角平分線定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是(
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點(diǎn),四邊形ABCD的對(duì)角線AC,BD交于點(diǎn)E,BC= ,CD= ,則sin∠AEB的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于實(shí)數(shù)a,我們規(guī)定:用符號(hào)表示不大于的最大整數(shù),稱a的根整數(shù),例如:,=3

(1)仿照以上方法計(jì)算:=______;=_____

(2),寫出滿足題意的x的整數(shù)值______

如果我們對(duì)a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對(duì)10連續(xù)求根整數(shù)2 =1,這時(shí)候結(jié)果為1

(3)對(duì)100連續(xù)求根整數(shù),____次之后結(jié)果為1

(4)只需進(jìn)行3次連續(xù)求根整數(shù)運(yùn)算后結(jié)果為1的所有正整數(shù)中,最大的是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過(guò)點(diǎn)A、C,并與y軸交于點(diǎn)E,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)A.

(1)點(diǎn)E的坐標(biāo)是;
(2)求反比例函數(shù)的解析式;
(3)求當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案