【題目】已知,拋物線y=ax2+bx+c(a≠0)經過原點,頂點為A(h,k)(h≠0).
(1)當h=1,k=2時,求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經過A點,求a與t之間的關系式;
(3)當點A在拋物線y=x2﹣x上,且﹣2≤h<1時,求a的取值范圍.
【答案】
(1)
∵頂點為A(1,2),設拋物線為y=a(x﹣1)2+2,
∵拋物線經過原點,
∴0=a(0﹣1)2+2,
∴a=﹣2,
∴拋物線解析式為y=﹣2x2+4x
(2)
∵拋物線經過原點,
∴設拋物線為y=ax2+bx,
∵h=﹣ ,
∴b=﹣2ah,
∴y=ax2﹣2ahx,
∵頂點A(h,k),
∴k=ah2﹣2ah,
拋物線y=tx2也經過A(h,k),
∴k=th2,
∴th2=ah2﹣2ah2,
∴t=﹣a,
(3)
∵點A在拋物線y=x2﹣x上,
∴k=h2﹣h,又k=ah2﹣2ah2,
∴h= ,
∵﹣2≤h<1,
∴﹣2≤ <1,
①當1+a>0時,即a>﹣1時, ,解得a>0,
②當1+a<0時,即a<﹣1時, 解得a≤﹣ ,
綜上所述,a的取值范圍a>0或a≤﹣
【解析】(1)用頂點式解決這個問題,設拋物線為y=a(x﹣1)2+2,原點代入即可.(2)設拋物線為y=ax2+bx,則h=﹣ ,b=﹣2ah代入拋物線解析式,求出k(用a、h表示),又拋物線y=tx2也經過A(h,k),求出k,列出方程即可解決.(3)根據條件列出關于a的不等式即可解決問題.本題考查二次函數綜合題、不等式等知識,解題的關鍵是學會用參數解決問題,題目比較難參數比較多,第三個問題解不等式要注意討論,屬于中考壓軸題.
【考點精析】通過靈活運用拋物線與坐標軸的交點,掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.
科目:初中數學 來源: 題型:
【題目】解分式方程:
(1) (2)
【答案】(1) ;(2)x=
【解析】試題分析:(1)兩邊乘以(x-1)(2x+1)去分母,轉化為整式方程,然后解整式方程,檢驗后寫出分式方程的解即可;
(2)兩邊乘以(x+2)(x-2)去分母,轉化為整式方程,然后解整式方程,檢驗后寫出分式方程的解即可.
試題解析:
解:(1)兩邊乘以(x-1)(2x+1)去分母得:2x+1=5(x-1),
解得:x=2,
當x=2時,(x-1)(2x+1)≠0,
∴原分式方程的解為x=2;
(2)兩邊乘以(x+2)(x-2)去分母得:(x-2)2-3=(x+2)(x-2),
解得:x=,
當x=時,(x+2)(x-2)≠0,
所以原分式方程的解為x=.
【題型】解答題
【結束】
21
【題目】先化簡,再求值,其中的值從不等式組的整數解中選取.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點,與y軸交于點C
(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F(xiàn)為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于E.
(1)求證:△AFE≌△CDF;
(2)若AB=4,BC=8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩種移動電話計費方式表如下:
(1)設一個月內在本地通話時間為分鐘,全球通收費表示為 元,神州行收費表示為 元
(2)若某用戶一個月內本地通話時間為2.5小時,你認為選擇哪種方式較為劃算?
(3)當通話時間為多少時間,兩種收費方式的費用是一樣的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若∠1=100°,∠4=80°,則__________,理由是________________;若∠3=70°,則∠2=_______時,也可推出AB∥CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為深化義務教育課程改革,某校積極開展拓展性課程建設,計劃開設藝術、體育、勞技、文學等多個類別的拓展性課程,要求每一位學生都自主選擇一個類別的拓展性課程.為了了解學生選擇拓展性課程的情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如下統(tǒng)計圖(部分信息未給出):
根據統(tǒng)計圖中的信息,解答下列問題:
(1)求本次被調查的學生人數.
(2)將條形統(tǒng)計圖補充完整.
(3)若該校共有1600名學生,請估計全校選擇體育類的學生人數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com