(2009•福州)已知,A、B、C、D、E是反比例函數(shù)y=(x>0)圖象上五個整數(shù)點(橫,縱坐標均為整數(shù)),分別以這些點向橫軸或縱軸作垂線段,由垂線段所在的正方形邊長為半徑作四分之一圓周的兩條弧,組成如圖所示的五個橄欖形(陰影部分),則這五個橄欖形的面積總和是    (用含π的代數(shù)式表示).
【答案】分析:通過觀察可知每個橄欖形的陰影面積都是一個圓的面積的四分之一減去一個直角三角形的面積再乘以2,分別計算這5個陰影部分的面積相加即可表示.
解答:解:∵A、B、C、D、E是反比例函數(shù)y=(x>0)圖象上五個整數(shù)點,
∴x=1,y=16;
x=2,y=8;
x=4,y=4;
x=8,y=2;
x=16,y=1;
∴A、E正方形的邊長為1,橄欖形的面積為:
2r2
B、D正方形的邊長為2,橄欖形的面積為:
=2(π-2);
C正方形中橄欖形的面積為:
=8(π-2);
∴這五個橄欖形的面積總和是:(π-2)+2×2(π-2)+8(π-2)=13π-26.
故答案為:13π-26.
點評:本題主要通過考查橄欖形的面積的計算來考查反比例函數(shù)圖象的應用,關鍵是要分析出其圖象特點,再結合性質作答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•福州)已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M旋轉180°,得到△FEM,則點E在y軸上,點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P以M為頂點的拋物線為C3
(1)如圖,當m=6時,①直接寫出點M、F的坐標,②求C1、C2的函數(shù)解析式;
(2)當m發(fā)生變化時,①在C1的每一支上,y隨x的增大如何變化請說明理由.②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•福州)已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M旋轉180°,得到△FEM,則點E在y軸上,點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P以M為頂點的拋物線為C3
(1)如圖,當m=6時,①直接寫出點M、F的坐標,②求C1、C2的函數(shù)解析式;
(2)當m發(fā)生變化時,①在C1的每一支上,y隨x的增大如何變化請說明理由.②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省福州市中考數(shù)學試卷(解析版) 題型:解答題

(2009•福州)已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M旋轉180°,得到△FEM,則點E在y軸上,點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P以M為頂點的拋物線為C3
(1)如圖,當m=6時,①直接寫出點M、F的坐標,②求C1、C2的函數(shù)解析式;
(2)當m發(fā)生變化時,①在C1的每一支上,y隨x的增大如何變化請說明理由.②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2009•福州)已知,A、B、C、D、E是反比例函數(shù)y=(x>0)圖象上五個整數(shù)點(橫,縱坐標均為整數(shù)),分別以這些點向橫軸或縱軸作垂線段,由垂線段所在的正方形邊長為半徑作四分之一圓周的兩條弧,組成如圖所示的五個橄欖形(陰影部分),則這五個橄欖形的面積總和是    (用含π的代數(shù)式表示).

查看答案和解析>>

同步練習冊答案