【題目】如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是

【答案】4m
【解析】解:設路燈的高度為xm, ∵EF∥AD,
∴△BEF∽△BAD,
,
= ,
解得DF=x﹣1.8,
∵MN∥AD,
∴△CMN∽△CAD,

= ,
解得DN=x﹣1.5,
∵兩人相距4.7m,
∴FD+ND=4.7,
∴x﹣1.8+x﹣1.5=4.7,
解得x=4,
故答案為:4m.

設路燈的高度為xm,根據(jù)相似三角形對應邊成比例可得, ,即 = ,可得DF的表達式,再根據(jù)相似三角形對應邊成比例,同樣可得DN的表達式,由于DF+DN=4.7,可得關于x的方程,然后解方程求出x即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下框中是小明對一道題目的解答以及老師的批改.

題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內,沿前側內墻保留3m的空地,其他三側內墻各保留1m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288m2?
解:,
根據(jù)題意,得x2x=288.
解這個方程,得x1=﹣12(不合題意,舍去),x2=12
所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當溫室的長為28m,寬為14m時,矩形蔬菜種植區(qū)域的面積是288m2

我的結果也正確!
(1)小明發(fā)現(xiàn)他解答的結果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.結果為何正確呢?
(2)請指出小明解答中存在的問題,并補充缺少的過程: 變化一下會怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有學生2100人,在“文明我先行”活動中,開設了“法律、禮儀、環(huán)保、感恩、互助”五門校本課程,規(guī)定每位學生必須且只能選一門,為了解學生的報名意向,學校隨機調查了100名學生,并制成統(tǒng)計表:校本課程意向統(tǒng)計表

課程類型

頻數(shù)

頻率(%)

法律

s

0.08

禮儀

a

0.20

環(huán)保

27

0.27

感恩

b

m

互助

15

0.15

合計

100

1.00

請根據(jù)統(tǒng)計表的信息,解答下列問題;
(1)在這次調查活動中,學校采取的調查方式是(填寫“普查”或“抽樣調查”);
(2)a= , b= , m=;
(3)如果要畫“校本課程報名意向扇形統(tǒng)計圖”,那么“禮儀”類校本課程對應的扇形圓心角的度數(shù)是;
(4)請你估計,選擇“感恩”類校本課程的學生約有人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點.

(1)求該拋物線的解析式;
(2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點,一塊足夠大的三角板的直角頂點與點E重合,將三角板繞點E旋轉,三角板的兩直角邊分別交AB,BC(或它們的延長線)于點M,N,設∠AEM=α(0°<α<90°),給出下列四個結論: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④SEMN=
上述結論中正確的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時,求出四邊形ACDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時,求出四邊形ACDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了進一步改進本校七年級數(shù)學教學,提高學生學習數(shù)學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查.我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計,現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上提供的信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是;
(3)若該校七年級共有960名學生,請你估算該年級學生中對數(shù)學學習“不太喜歡”的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若SDOE:SCOA=1:25,則SBDE與SCDE的比是(

A.1:3
B.1:4
C.1:5
D.1:25

查看答案和解析>>

同步練習冊答案