已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A(-2,0)、點(diǎn)B(6,0),與y軸交于點(diǎn)C.
(1)求出此拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);
(2)在拋物線上有一點(diǎn)D,使四邊形ABDC為等腰梯形,寫出點(diǎn)D的坐標(biāo),并求出直線AD的解析式;
(3)在(2)中的直線AD交拋物線的對(duì)稱軸于點(diǎn)M,拋物線上有一動(dòng)點(diǎn)P,x軸上有一動(dòng)點(diǎn)Q.是否存在以A、M、P、Q為頂點(diǎn)的平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)可將A,B兩點(diǎn)的坐標(biāo)代入函數(shù)的解析式中,可求出拋物線的解析式.進(jìn)而求出對(duì)稱軸的解析式和定點(diǎn)的坐標(biāo);
(2)由于二次函數(shù)和等腰梯形都是軸對(duì)稱圖形,可根據(jù)拋物線的對(duì)稱軸和C點(diǎn)的坐標(biāo)求出D的坐標(biāo).然后用待定系數(shù)法求出A,D所在直線的解析式.


(3)分五種情況進(jìn)行討論:
①如圖1,P與M的縱坐標(biāo)相等,可將M的縱坐標(biāo)代入拋物線中求出P的坐標(biāo),然后可根據(jù)M,P的橫坐標(biāo)求出MP的長(zhǎng),即AQ的長(zhǎng),然后根據(jù)A的坐標(biāo)即可求出Q的坐標(biāo).
②如圖2,方法同①.
③如圖3,根據(jù)平行四邊形的對(duì)稱性,那么M,P的縱坐標(biāo)互為相反數(shù),因此可求出P的坐標(biāo),可先在三角形AOM中求出AO的長(zhǎng),然后A到拋物線對(duì)稱軸的長(zhǎng)+P的橫坐標(biāo)=Q的橫坐標(biāo),據(jù)此可求出Q點(diǎn)的坐標(biāo).
④如圖4,可參照③的方法求出P的坐標(biāo),然后求出PA的長(zhǎng),即MQ的長(zhǎng),然后可過(guò)D作x軸的垂線,通過(guò)構(gòu)建直角三角形求出OQ的長(zhǎng).進(jìn)而得出Q的坐標(biāo).
⑤根據(jù)題意畫出圖形,即可求出答案.
解答:解:(1)根據(jù)題意,得,
解得,
∴拋物線的解析式為,
頂點(diǎn)坐標(biāo)是(2,4);

(2)D(4,3),
設(shè)直線AD的解析式為y=kx+b(k≠0),
∵直線經(jīng)過(guò)點(diǎn)A(-2,0)、點(diǎn)D(4,3),
,

∴y=x+1;

(3)存在.
①如圖1,P與M的縱坐標(biāo)相等,可將M的縱坐標(biāo)代入拋物線中求出P的坐標(biāo),然后可根據(jù)M,P的橫坐標(biāo)求出MP的長(zhǎng),即AQ的長(zhǎng),然后根據(jù)A的坐標(biāo)即可求出Q的坐標(biāo):Q1(2-2,0);
②如圖2,方法同①,Q2(-2-2,0);
③如圖3,根據(jù)平行四邊形的對(duì)稱性,那么M,P的縱坐標(biāo)互為相反數(shù),因此可求出P的坐標(biāo),可先在三角形AOM中求出AO的長(zhǎng),然后A到拋物線對(duì)稱軸的長(zhǎng)+P的橫坐標(biāo)=Q的橫坐標(biāo),據(jù)此可求出Q點(diǎn)的坐標(biāo):Q3(6-2,0);
④如圖4,可參照③的方法求出P的坐標(biāo),然后求出PA的長(zhǎng),即MQ的長(zhǎng),然后可過(guò)D作x軸的垂線,通過(guò)構(gòu)建直角三角形求出OQ的長(zhǎng).進(jìn)而得出Q的坐標(biāo):Q4(6+2,0).
⑤以AM為對(duì)角線時(shí),把x=2代入y=x+1得y=2,
即M的坐標(biāo)是(2,2),
過(guò)M作x軸的平行線交拋物線與P5、P6
則這兩點(diǎn)的縱坐標(biāo)是2,
把y=2代入y=-x2+x+3得:y=-x2+x+3=2,
解得:x=2±2,
即P5(2-2,2),P6(2+2,2),
∴Q5的坐標(biāo)是(2-2,0),Q6的坐標(biāo)是(-2-2,0).
綜上所述:Q1(2-2,0),Q2(-2-2,0),Q3(6-2,0),Q4(6+2,0).
點(diǎn)評(píng):本題主要考查了二次函數(shù)的相關(guān)知識(shí),(1)(2)比較簡(jiǎn)單,要注意的是(3)中要把所有的情況都考慮到不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A(-2,0)、點(diǎn)B(6,0),與y軸交于點(diǎn)C.
(1)求出此拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);
(2)在拋物線上有一點(diǎn)D,使四邊形ABDC為等腰梯形,寫出點(diǎn)D的坐標(biāo),并求出直線AD的解析式;
(3)在(2)中的直線AD交拋物線的對(duì)稱軸于點(diǎn)M,拋物線上有一動(dòng)點(diǎn)P,x軸上有一動(dòng)點(diǎn)Q精英家教網(wǎng).是否存在以A、M、P、Q為頂點(diǎn)的平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:內(nèi)蒙古自治區(qū)模擬題 題型:解答題

已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A(-2,0)、點(diǎn)B(6,0),與y軸交于點(diǎn)C。
(1)求出此拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);
(2)在拋物線上有一點(diǎn)D,使四邊形ABDC為等腰梯形,寫出點(diǎn)D的坐標(biāo),并求出直線AD的解析式;(3)在(2)中的直線AD交拋物線的對(duì)稱軸于點(diǎn)M,拋物線上有一動(dòng)點(diǎn)P,x軸上有一動(dòng)點(diǎn)Q,是否存在以A、M、P、Q為頂點(diǎn)的平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(33):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A(-2,0)、點(diǎn)B(6,0),與y軸交于點(diǎn)C.
(1)求出此拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);
(2)在拋物線上有一點(diǎn)D,使四邊形ABDC為等腰梯形,寫出點(diǎn)D的坐標(biāo),并求出直線AD的解析式;
(3)在(2)中的直線AD交拋物線的對(duì)稱軸于點(diǎn)M,拋物線上有一動(dòng)點(diǎn)P,x軸上有一動(dòng)點(diǎn)Q.是否存在以A、M、P、Q為頂點(diǎn)的平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年云南省楚雄州雙柏縣中考數(shù)學(xué)模擬試卷(雨龍中學(xué))(解析版) 題型:解答題

(2009•撫順)已知:如圖所示,關(guān)于x的拋物線y=ax2+x+c(a≠0)與x軸交于點(diǎn)A(-2,0)、點(diǎn)B(6,0),與y軸交于點(diǎn)C.
(1)求出此拋物線的解析式,并寫出頂點(diǎn)坐標(biāo);
(2)在拋物線上有一點(diǎn)D,使四邊形ABDC為等腰梯形,寫出點(diǎn)D的坐標(biāo),并求出直線AD的解析式;
(3)在(2)中的直線AD交拋物線的對(duì)稱軸于點(diǎn)M,拋物線上有一動(dòng)點(diǎn)P,x軸上有一動(dòng)點(diǎn)Q.是否存在以A、M、P、Q為頂點(diǎn)的平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案