已知:關于x的方程kx2+(2k-3)x+k-3=0.
(1)求證:方程總有實數根;
(2)當k取哪些整數時,關于x的方程kx2+(2k-3)x+k-3=0的兩個實數根均為負整數?
解:(1)分類討論:
若k=0,則此方程為一元一次方程,即-3x-3=0,
∴x=-1有根,
若k≠0,則此方程為一元二次方程,
∴△=(2k-3)
2-4k(k-3)=9>0,
∴方程有兩個不相等的實數根,
綜上所述,方程總有實數根.
(2)∵方程有兩個實數根,
∴方程為一元二次方程.
∵利用求根公式
,
得
;x
2=-1,
∵方程有兩個負整數根,
∴
是負整數,即k是3的約數
∴k=±1,±3
但k=1、3時根不是負整數,
∴k=-1、-3.
分析:(1)分兩種情況討論,當k=0時為一元一次方程,方程有一個實數根;當k≠0時,利用根的判別式計算出△>0,得到方程總有實數根;
(2)先判斷出方程為一元二次方程,然后利用求根公式求出方程的兩個根,再根據方程兩根均為負數得出k的取值范圍,從而求出k的值.
點評:此題主要考查了一元二次方程根的判別式,要明確:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根;同時要加以靈活運用.